Resistors in dual networks

<p>Let <em>G</em> be a finite plane multigraph and <em>G</em>' its dual. Each edge <em>e</em> of <em>G</em> is interpreted as a resistor of resistance <em>R<sub>e</sub></em>, and the dual edge <em>e'</em...

Full description

Bibliographic Details
Main Authors: Martina Furrer, Norbert Hungerbühler, Simon Jantschgi
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2020-10-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/657
Description
Summary:<p>Let <em>G</em> be a finite plane multigraph and <em>G</em>' its dual. Each edge <em>e</em> of <em>G</em> is interpreted as a resistor of resistance <em>R<sub>e</sub></em>, and the dual edge <em>e'</em> is assigned the dual resistance <em>R</em><sub><em>e</em>'</sub>:=1/<em>R<sub>e</sub></em>. Then the equivalent resistance <em>r</em><sub>e</sub> over <em>e</em> and the equivalent resistance <em>r</em><sub>e'</sub> over <em>e</em>' satisfy r<sub>e</sub>/<em>R<sub>e</sub></em>+<em>r</em><sub><em>e</em>'</sub>/<em>R</em><sub><em>e</em>'</sub>=1. We provide a graph theoretic proof of this relation by expressing the resistances in terms of sums of weights of spanning trees in <em>G</em> and <em>G</em>' respectively.</p>
ISSN:2338-2287