Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy

The fabrication of GaAs- and InP-based III-V semiconductor nanowires with axial/radial heterostructures by using selective-area metal-organic vapor-phase epitaxy is reviewed. Nanowires, with a diameter of 50–300 nm and with a length of up to 10 μm, have been grown along the 〈111〉B or 〈111〉A crysta...

Full description

Bibliographic Details
Main Authors: K. Hiruma, K. Tomioka, P. Mohan, L. Yang, J. Noborisaka, B. Hua, A. Hayashida, S. Fujisawa, S. Hara, J. Motohisa, T. Fukui
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Nanotechnology
Online Access:http://dx.doi.org/10.1155/2012/169284
Description
Summary:The fabrication of GaAs- and InP-based III-V semiconductor nanowires with axial/radial heterostructures by using selective-area metal-organic vapor-phase epitaxy is reviewed. Nanowires, with a diameter of 50–300 nm and with a length of up to 10 μm, have been grown along the 〈111〉B or 〈111〉A crystallographic orientation from lithography-defined SiO2 mask openings on a group III-V semiconductor substrate surface. An InGaAs quantum well (QW) in GaAs/InGaAs nanowires and a GaAs QW in GaAs/AlGaAs or GaAs/GaAsP nanowires have been fabricated for the axial heterostructures to investigate photoluminescence spectra from QWs with various thicknesses. Transmission electron microscopy combined with energy dispersive X-ray spectroscopy measurements have been used to analyze the crystal structure and the atomic composition profile for the nanowires. GaAs/AlGaAs, InP/InAs/InP, and GaAs/GaAsP core-shell structures have been found to be effective for the radial heterostructures to increase photoluminescence intensity and have enabled laser emissions from a single GaAs/GaAsP nanowire waveguide. The results have indicated that the core-shell structure is indispensable for surface passivation and practical use of nanowire optoelectronics devices.
ISSN:1687-9503
1687-9511