The association of <sup>18</sup>F-deoxyglucose (FDG) uptake of PET with polymorphisms in the glucose transporter gene (<it>SLC2A1</it>) and hypoxia-related genes (<it>HIF1A</it>, <it>VEGFA</it>, <it>APEX1</it>) in non-small cell lung cancer. <it>SLC2A1 </it>polymorphisms and FDG-PET in NSCLC patients

<p>Abstract</p> <p>Background</p> <p>Positron emission tomography imaging of lung cancers with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose is a non-invasive diagnostic, and prognostic tool that measures tumor metabolism. We have analyzed the effect of solute carrier family...

Full description

Bibliographic Details
Main Authors: Lee Chang Hun, Lee Min Ki, Kim In Joo, Hwang Sang-Hyun, Kim Seong-Jang, Lee Sang-Yull, Lee Eun Yup
Format: Article
Language:English
Published: BMC 2010-06-01
Series:Journal of Experimental & Clinical Cancer Research
Online Access:http://www.jeccr.com/content/29/1/69
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Positron emission tomography imaging of lung cancers with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose is a non-invasive diagnostic, and prognostic tool that measures tumor metabolism. We have analyzed the effect of solute carrier family 2 (facilitated glucose transporter), member 1 polymorphisms on 2-[fluorine-18]-fluoro-2-deoxy-D-glucose-uptake with a combination of polymorphisms of hypoxia-inducible factor 1 alpha, apurinic/apyimidinic endonuclease, and vascular endothelial growth factor A in a hypoxia-related pathway.</p> <p>Methods</p> <p>We investigated the association between solute carrier family 2 (facilitated glucose transporter), member 1 -2841A>T, hypoxia-inducible factor 1 alpha Pro582Ser, Ala588Thr, apurinic/apyimidinic endonuclease Asp148Glu, or vascular endothelial growth factor A +936C>T and 2-[fluorine-18]-fluoro-2-deoxy-D-glucose-uptake among 154 patients with non-small-cell lung cancer.</p> <p>Results</p> <p>The solute carrier family 2 (facilitated glucose transporter), member 1 -2841A>T polymorphism was significantly associated with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose-uptake in combination with the apurinic/apyimidinic endonuclease Asp148Glu (T>G) polymorphism in the squamous cell type of non-small-cell lung cancer. The solute carrier family 2 (facilitated glucose transporter), member 1 TT genotype had a higher maximum standardized uptake values than the AA + AT genotype when the apurinic/apyimidinic endonuclease genotype was TT (mean maximum standardized uptake values, 12.47 ± 1.33 versus 8.46 ± 2.90, respectively; <it>P </it>= 0.028). The mean maximum standardized uptake values were not statistically different with respect to vascular endothelial growth factor A and hypoxia-inducible factor 1 alpha polymorphisms.</p> <p>Conclusion</p> <p>A glucose transporter gene polymorphism was shown to be statistically associated with glucose-uptake when the apurinic/apyimidinic endonuclease genotype is TT in patients with the squamous cell type of non-small-cell lung cancer. Our findings suggest that a newly developed tracer for positron emission tomography could be affected by genetic polymorphisms.</p>
ISSN:1756-9966