<i>Pantoea</i> Bacteriophage vB_PagS_MED16—A Siphovirus Containing a 2′-Deoxy-7-amido-7-deazaguanosine-Modified DNA

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using <i>Pantoea agglomerans</i> strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative...

Full description

Bibliographic Details
Main Authors: Monika Šimoliūnienė, Emilija Žukauskienė, Lidija Truncaitė, Liang Cui, Geoffrey Hutinet, Darius Kazlauskas, Algirdas Kaupinis, Martynas Skapas, Valérie de Crécy-Lagard, Peter C. Dedon, Mindaugas Valius, Rolandas Meškys, Eugenijus Šimoliūnas
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/14/7333
Description
Summary:A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using <i>Pantoea agglomerans</i> strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage–host interactions, and DNA metabolism. In addition, a gene encoding a preQ<sub>0</sub> DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC–MS/MS analysis indicates 2′-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of <i>Pantoea</i> phages. Thus, the data presented in this study provide new information on <i>Pantoea</i>-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.
ISSN:1661-6596
1422-0067