Gabor Dual Frames with Characteristic Function Window
The duals of Gabor frames have an essential role in reconstruction of signals. In this paper we find a necessary and sufficient condition for two Gabor systems $\left(\chi_{\left[c_1,d_1\right)},a,b\right)$ and $\left(\chi_{\left[c_2,d_2\right)},a,b\right)$ to form dual frames for $L_2\left(\mathbb...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2021-02-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_46666_9834ce9dba37510565d183a06f8f5574.pdf |
id |
doaj-d31a62fa3cc244448ea569f841b05d73 |
---|---|
record_format |
Article |
spelling |
doaj-d31a62fa3cc244448ea569f841b05d732021-02-13T05:32:59ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002021-02-01181475710.22130/scma.2020.121704.75146666Gabor Dual Frames with Characteristic Function WindowMohammad Ali Hasankhani Fard0Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 546, Rafsanjan, Iran.The duals of Gabor frames have an essential role in reconstruction of signals. In this paper we find a necessary and sufficient condition for two Gabor systems $\left(\chi_{\left[c_1,d_1\right)},a,b\right)$ and $\left(\chi_{\left[c_2,d_2\right)},a,b\right)$ to form dual frames for $L_2\left(\mathbb{R}\right)$, where $a$ and $b$ are positive numbers and $c_1,c_2,d_1$ and $d_2$ are real numbers such that $c_1<d_1$ and $c_2<d_2$.https://scma.maragheh.ac.ir/article_46666_9834ce9dba37510565d183a06f8f5574.pdfframedual framegabor systemgabor frame |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammad Ali Hasankhani Fard |
spellingShingle |
Mohammad Ali Hasankhani Fard Gabor Dual Frames with Characteristic Function Window Sahand Communications in Mathematical Analysis frame dual frame gabor system gabor frame |
author_facet |
Mohammad Ali Hasankhani Fard |
author_sort |
Mohammad Ali Hasankhani Fard |
title |
Gabor Dual Frames with Characteristic Function Window |
title_short |
Gabor Dual Frames with Characteristic Function Window |
title_full |
Gabor Dual Frames with Characteristic Function Window |
title_fullStr |
Gabor Dual Frames with Characteristic Function Window |
title_full_unstemmed |
Gabor Dual Frames with Characteristic Function Window |
title_sort |
gabor dual frames with characteristic function window |
publisher |
University of Maragheh |
series |
Sahand Communications in Mathematical Analysis |
issn |
2322-5807 2423-3900 |
publishDate |
2021-02-01 |
description |
The duals of Gabor frames have an essential role in reconstruction of signals. In this paper we find a necessary and sufficient condition for two Gabor systems $\left(\chi_{\left[c_1,d_1\right)},a,b\right)$ and $\left(\chi_{\left[c_2,d_2\right)},a,b\right)$ to form dual frames for $L_2\left(\mathbb{R}\right)$, where $a$ and $b$ are positive numbers and $c_1,c_2,d_1$ and $d_2$ are real numbers such that $c_1<d_1$ and $c_2<d_2$. |
topic |
frame dual frame gabor system gabor frame |
url |
https://scma.maragheh.ac.ir/article_46666_9834ce9dba37510565d183a06f8f5574.pdf |
work_keys_str_mv |
AT mohammadalihasankhanifard gabordualframeswithcharacteristicfunctionwindow |
_version_ |
1724271902861557760 |