Guided Wave-Based Monitoring of Evolution of Fatigue Damage in Glass Fiber/Epoxy Composites

This paper presents an experimental study on detecting and monitoring of evolution of fatigue damage in composites under cyclic loads by using guided waves. Composite specimens fabricated by glass fiber/epoxy laminates and surface mounted with piezoelectric wafers are fatigued under tension&#821...

Full description

Bibliographic Details
Main Authors: Gang Yan, Xiang Lu, Jianfei Tang
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/7/1394
Description
Summary:This paper presents an experimental study on detecting and monitoring of evolution of fatigue damage in composites under cyclic loads by using guided waves. Composite specimens fabricated by glass fiber/epoxy laminates and surface mounted with piezoelectric wafers are fatigued under tension–tension loads. A laser extensometer is used to obtain the degradation of longitudinal stiffness of the specimens under fatigue states to reflect the accumulation of internal fatigue damage. Meanwhile, at different fatigue cycles, one wafer acts as actuator to excite diagnostic guided waves, and the other acts as sensor to receive corresponding response waves. These guided wave signals are then processed by wavelet packet transform to extract characteristic features of energies in multiple frequency bands. A statistical multivariate outlier analysis is then performed to determine the existence of fatigue damage and to characterize their evolution using Mahalanobis squared distance. Experimental results have demonstrated the potential applicability and effectiveness of guided waves for continuous monitoring of fatigue damage in composite structures.
ISSN:2076-3417