Population Diversity Control of Genetic Algorithm Using a Novel Injection Method for Bankruptcy Prediction Problem

Exploration and exploitation are the two main concepts of success for searching algorithms. Controlling exploration and exploitation while executing the search algorithm will enhance the overall performance of the searching algorithm. Exploration and exploitation are usually controlled offline by pr...

Full description

Bibliographic Details
Main Authors: Nabeel Al-Milli, Amjad Hudaib, Nadim Obeid
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/8/823
Description
Summary:Exploration and exploitation are the two main concepts of success for searching algorithms. Controlling exploration and exploitation while executing the search algorithm will enhance the overall performance of the searching algorithm. Exploration and exploitation are usually controlled offline by proper settings of parameters that affect the population-based algorithm performance. In this paper, we proposed a dynamic controller for one of the most well-known search algorithms, which is the Genetic Algorithm (GA). Population Diversity Controller-GA (PDC-GA) is proposed as a novel feature-selection algorithm to reduce the search space while building a machine-learning classifier. The PDC-GA is proposed by combining GA with k-mean clustering to control population diversity through the exploration process. An injection method is proposed to redistribute the population once 90% of the solutions are located in one cluster. A real case study of a bankruptcy problem obtained from UCI Machine Learning Repository is used in this paper as a binary classification problem. The obtained results show the ability of the proposed approach to enhance the performance of the machine learning classifiers in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>%</mo></mrow></semantics></math></inline-formula>.
ISSN:2227-7390