Breeding and predictability in the baroclinic rotating annulus using a perfect model
We present results from a computational study of predictability in fully-developed baroclinically unstable laboratory flows. This behaviour is studied in the Met Office/Oxford Rotating Annulus Laboratory Simulation – a model of the classic rotating annulus laboratory experiment with differentially h...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2008-06-01
|
Series: | Nonlinear Processes in Geophysics |
Online Access: | http://www.nonlin-processes-geophys.net/15/469/2008/npg-15-469-2008.pdf |
id |
doaj-d2f58d287ad142e7be97f7a4cc50a479 |
---|---|
record_format |
Article |
spelling |
doaj-d2f58d287ad142e7be97f7a4cc50a4792020-11-24T22:29:45ZengCopernicus PublicationsNonlinear Processes in Geophysics1023-58091607-79462008-06-01153469487Breeding and predictability in the baroclinic rotating annulus using a perfect modelR. M. B. YoungP. L. ReadWe present results from a computational study of predictability in fully-developed baroclinically unstable laboratory flows. This behaviour is studied in the Met Office/Oxford Rotating Annulus Laboratory Simulation – a model of the classic rotating annulus laboratory experiment with differentially heated cylindrical sidewalls, which is firmly established as an insightful laboratory analogue for certain kinds of atmospheric dynamical behaviour. This work is the first study of "predictability of the first kind" in the annulus experiment. We devise an ensemble prediction scheme using the breeding method to study the predictability of the annulus in the perfect model scenario. This scenario allows one simulation to be defined as the true state, against which all forecasts are measured. We present results from forecasts over a range of quasi-periodic and chaotic annulus flow regimes. A number of statistical and meteorological techniques are used to compare the predictability of these flows: bred vector growth rate and dimension, error variance, "spaghetti plots", probability forecasts, Brier score, and the Kolmogorov-Smirnov test. These techniques gauge both the predictability of the flow and the performance of the ensemble relative to a forecast using a climatological distribution. It is found that in the perfect model scenario, the two quasi-periodic regimes examined may be indefinitely predictable. The two chaotic regimes (structural vacillation and period doubled amplitude vacillation) show a loss of predictability on a timescale of hundreds to thousands of seconds (65–280 annulus rotation periods, or 1–3 Lyapunov times). http://www.nonlin-processes-geophys.net/15/469/2008/npg-15-469-2008.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R. M. B. Young P. L. Read |
spellingShingle |
R. M. B. Young P. L. Read Breeding and predictability in the baroclinic rotating annulus using a perfect model Nonlinear Processes in Geophysics |
author_facet |
R. M. B. Young P. L. Read |
author_sort |
R. M. B. Young |
title |
Breeding and predictability in the baroclinic rotating annulus using a perfect model |
title_short |
Breeding and predictability in the baroclinic rotating annulus using a perfect model |
title_full |
Breeding and predictability in the baroclinic rotating annulus using a perfect model |
title_fullStr |
Breeding and predictability in the baroclinic rotating annulus using a perfect model |
title_full_unstemmed |
Breeding and predictability in the baroclinic rotating annulus using a perfect model |
title_sort |
breeding and predictability in the baroclinic rotating annulus using a perfect model |
publisher |
Copernicus Publications |
series |
Nonlinear Processes in Geophysics |
issn |
1023-5809 1607-7946 |
publishDate |
2008-06-01 |
description |
We present results from a computational study of predictability in fully-developed baroclinically unstable laboratory flows. This behaviour is studied in the Met Office/Oxford Rotating Annulus Laboratory Simulation – a model of the classic rotating annulus laboratory experiment with differentially heated cylindrical sidewalls, which is firmly established as an insightful laboratory analogue for certain kinds of atmospheric dynamical behaviour. This work is the first study of "predictability of the first kind" in the annulus experiment. We devise an ensemble prediction scheme using the breeding method to study the predictability of the annulus in the perfect model scenario. This scenario allows one simulation to be defined as the true state, against which all forecasts are measured. We present results from forecasts over a range of quasi-periodic and chaotic annulus flow regimes. A number of statistical and meteorological techniques are used to compare the predictability of these flows: bred vector growth rate and dimension, error variance, "spaghetti plots", probability forecasts, Brier score, and the Kolmogorov-Smirnov test. These techniques gauge both the predictability of the flow and the performance of the ensemble relative to a forecast using a climatological distribution. It is found that in the perfect model scenario, the two quasi-periodic regimes examined may be indefinitely predictable. The two chaotic regimes (structural vacillation and period doubled amplitude vacillation) show a loss of predictability on a timescale of hundreds to thousands of seconds (65–280 annulus rotation periods, or 1–3 Lyapunov times). |
url |
http://www.nonlin-processes-geophys.net/15/469/2008/npg-15-469-2008.pdf |
work_keys_str_mv |
AT rmbyoung breedingandpredictabilityinthebaroclinicrotatingannulususingaperfectmodel AT plread breedingandpredictabilityinthebaroclinicrotatingannulususingaperfectmodel |
_version_ |
1725743393602011136 |