Summary: | Topography and relief variability play a key role in ecosystem functioning and structuring. However, the most commonly used concept to relate pattern to process in landscape ecology, the so-called patch-corridor-matrix model, perceives the landscape as a planimetric surface. As a consequence, landscape metrics, used as numerical descriptors of the spatial arrangement of landscape mosaics, generally do not allow for the examination of terrain characteristics and may even produce erroneous results, especially in mountainous areas. This brief methodological study provides basic approaches to include relief properties into large-scale landscape analyses, including the calculation of standard landscape metrics on the basis of "true" surface geometries and the application of roughness parameters derived from surface metrology. The methods are tested for their explanatory power using neutral landscapes and simulated elevation models. The results reveal that area and distance metrics possess a high sensitivity to terrain complexity, while the values of shape metrics change only slightly when surface geometries are considered for their calculation. In summary, the proposed methods prove to be a valuable extension of the existing set of metrics mainly in "rough" landscape sections, allowing for a more realistic assessment of the spatial structure.
|