Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization

Double emulsions show significant advantages for microencapsulation but are thermodynamically unstable. Here the authors show, that silica nanocapsules with nanorattles or Janus-like nanomushroom structures can be prepared by stabilizing double emulsions with a silica precursor polymer and subsequen...

Full description

Bibliographic Details
Main Authors: Yongliang Zhao, Junli Liu, Zhi Chen, Xiaomin Zhu, Martin Möller
Format: Article
Language:English
Published: Nature Publishing Group 2018-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-04320-7
id doaj-d2d8c21ee3b447178d0f236637e1d41d
record_format Article
spelling doaj-d2d8c21ee3b447178d0f236637e1d41d2021-01-31T14:41:22ZengNature Publishing GroupNature Communications2041-17232018-05-01911910.1038/s41467-018-04320-7Hybrid nanostructured particles via surfactant-free double miniemulsion polymerizationYongliang Zhao0Junli Liu1Zhi Chen2Xiaomin Zhu3Martin Möller4DWI – Leibniz-Institute for Interactive Materials e.V., Institute for Technical and Macromolecular Chemistry of RWTH Aachen UniversityDWI – Leibniz-Institute for Interactive Materials e.V., Institute for Technical and Macromolecular Chemistry of RWTH Aachen UniversityDWI – Leibniz-Institute for Interactive Materials e.V., Institute for Technical and Macromolecular Chemistry of RWTH Aachen UniversityDWI – Leibniz-Institute for Interactive Materials e.V., Institute for Technical and Macromolecular Chemistry of RWTH Aachen UniversityDWI – Leibniz-Institute for Interactive Materials e.V., Institute for Technical and Macromolecular Chemistry of RWTH Aachen UniversityDouble emulsions show significant advantages for microencapsulation but are thermodynamically unstable. Here the authors show, that silica nanocapsules with nanorattles or Janus-like nanomushroom structures can be prepared by stabilizing double emulsions with a silica precursor polymer and subsequent polymerization of the oil phase.https://doi.org/10.1038/s41467-018-04320-7
collection DOAJ
language English
format Article
sources DOAJ
author Yongliang Zhao
Junli Liu
Zhi Chen
Xiaomin Zhu
Martin Möller
spellingShingle Yongliang Zhao
Junli Liu
Zhi Chen
Xiaomin Zhu
Martin Möller
Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
Nature Communications
author_facet Yongliang Zhao
Junli Liu
Zhi Chen
Xiaomin Zhu
Martin Möller
author_sort Yongliang Zhao
title Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
title_short Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
title_full Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
title_fullStr Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
title_full_unstemmed Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
title_sort hybrid nanostructured particles via surfactant-free double miniemulsion polymerization
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2018-05-01
description Double emulsions show significant advantages for microencapsulation but are thermodynamically unstable. Here the authors show, that silica nanocapsules with nanorattles or Janus-like nanomushroom structures can be prepared by stabilizing double emulsions with a silica precursor polymer and subsequent polymerization of the oil phase.
url https://doi.org/10.1038/s41467-018-04320-7
work_keys_str_mv AT yongliangzhao hybridnanostructuredparticlesviasurfactantfreedoubleminiemulsionpolymerization
AT junliliu hybridnanostructuredparticlesviasurfactantfreedoubleminiemulsionpolymerization
AT zhichen hybridnanostructuredparticlesviasurfactantfreedoubleminiemulsionpolymerization
AT xiaominzhu hybridnanostructuredparticlesviasurfactantfreedoubleminiemulsionpolymerization
AT martinmoller hybridnanostructuredparticlesviasurfactantfreedoubleminiemulsionpolymerization
_version_ 1724317014469640192