Local Fractional Metric Dimensions of Generalized Petersen Networks

Metric dimension is a distance-based tool that is used in the different fields of computer science and chemistry such as navigation, combinatorial optimization, pattern recognition, image processing, integer programming and formation of chemical compounds. In this paper, we study the latest type of...

Full description

Bibliographic Details
Main Authors: Mohsin Raza, Dalal Awadh Alrowaili, Muhammad Javaid
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9430539/
id doaj-d2b6f28adfd0403892144d6101d9a3fc
record_format Article
spelling doaj-d2b6f28adfd0403892144d6101d9a3fc2021-06-02T23:17:50ZengIEEEIEEE Access2169-35362021-01-019741107412610.1109/ACCESS.2021.30801309430539Local Fractional Metric Dimensions of Generalized Petersen NetworksMohsin Raza0https://orcid.org/0000-0003-0997-6619Dalal Awadh Alrowaili1https://orcid.org/0000-0002-3636-6990Muhammad Javaid2https://orcid.org/0000-0001-7241-8172Department of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanDepartment of Mathematics, College of Science, Jouf University, Sakaka, Saudi ArabiaDepartment of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanMetric dimension is a distance-based tool that is used in the different fields of computer science and chemistry such as navigation, combinatorial optimization, pattern recognition, image processing, integer programming and formation of chemical compounds. In this paper, we study the latest type of metric dimension called as local fractional metric dimension (LFMD) and find its upper bounds for generalized Petersen networks <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n\geq 5$ </tex-math></inline-formula>. Moreover, for <inline-formula> <tex-math notation="LaTeX">$n\in \{5, 8, 10\}$ </tex-math></inline-formula> exact values and for <inline-formula> <tex-math notation="LaTeX">$n\in \{6, 7, 9, 11\}$ </tex-math></inline-formula> constant upper bounds of the LFMD are obtained. For <inline-formula> <tex-math notation="LaTeX">$n\geq 12$ </tex-math></inline-formula>, the limiting values of LFMD for <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula> are also obtained as 2 (bounded) if <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> approaches to infinity.https://ieeexplore.ieee.org/document/9430539/Metric dimensionlocal fractional metric dimensionpetersen networklocal resolving neighborhoods
collection DOAJ
language English
format Article
sources DOAJ
author Mohsin Raza
Dalal Awadh Alrowaili
Muhammad Javaid
spellingShingle Mohsin Raza
Dalal Awadh Alrowaili
Muhammad Javaid
Local Fractional Metric Dimensions of Generalized Petersen Networks
IEEE Access
Metric dimension
local fractional metric dimension
petersen network
local resolving neighborhoods
author_facet Mohsin Raza
Dalal Awadh Alrowaili
Muhammad Javaid
author_sort Mohsin Raza
title Local Fractional Metric Dimensions of Generalized Petersen Networks
title_short Local Fractional Metric Dimensions of Generalized Petersen Networks
title_full Local Fractional Metric Dimensions of Generalized Petersen Networks
title_fullStr Local Fractional Metric Dimensions of Generalized Petersen Networks
title_full_unstemmed Local Fractional Metric Dimensions of Generalized Petersen Networks
title_sort local fractional metric dimensions of generalized petersen networks
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description Metric dimension is a distance-based tool that is used in the different fields of computer science and chemistry such as navigation, combinatorial optimization, pattern recognition, image processing, integer programming and formation of chemical compounds. In this paper, we study the latest type of metric dimension called as local fractional metric dimension (LFMD) and find its upper bounds for generalized Petersen networks <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n\geq 5$ </tex-math></inline-formula>. Moreover, for <inline-formula> <tex-math notation="LaTeX">$n\in \{5, 8, 10\}$ </tex-math></inline-formula> exact values and for <inline-formula> <tex-math notation="LaTeX">$n\in \{6, 7, 9, 11\}$ </tex-math></inline-formula> constant upper bounds of the LFMD are obtained. For <inline-formula> <tex-math notation="LaTeX">$n\geq 12$ </tex-math></inline-formula>, the limiting values of LFMD for <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula> are also obtained as 2 (bounded) if <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> approaches to infinity.
topic Metric dimension
local fractional metric dimension
petersen network
local resolving neighborhoods
url https://ieeexplore.ieee.org/document/9430539/
work_keys_str_mv AT mohsinraza localfractionalmetricdimensionsofgeneralizedpetersennetworks
AT dalalawadhalrowaili localfractionalmetricdimensionsofgeneralizedpetersennetworks
AT muhammadjavaid localfractionalmetricdimensionsofgeneralizedpetersennetworks
_version_ 1721400137240018944