Local Fractional Metric Dimensions of Generalized Petersen Networks
Metric dimension is a distance-based tool that is used in the different fields of computer science and chemistry such as navigation, combinatorial optimization, pattern recognition, image processing, integer programming and formation of chemical compounds. In this paper, we study the latest type of...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9430539/ |
id |
doaj-d2b6f28adfd0403892144d6101d9a3fc |
---|---|
record_format |
Article |
spelling |
doaj-d2b6f28adfd0403892144d6101d9a3fc2021-06-02T23:17:50ZengIEEEIEEE Access2169-35362021-01-019741107412610.1109/ACCESS.2021.30801309430539Local Fractional Metric Dimensions of Generalized Petersen NetworksMohsin Raza0https://orcid.org/0000-0003-0997-6619Dalal Awadh Alrowaili1https://orcid.org/0000-0002-3636-6990Muhammad Javaid2https://orcid.org/0000-0001-7241-8172Department of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanDepartment of Mathematics, College of Science, Jouf University, Sakaka, Saudi ArabiaDepartment of Mathematics, School of Science, University of Management and Technology, Lahore, PakistanMetric dimension is a distance-based tool that is used in the different fields of computer science and chemistry such as navigation, combinatorial optimization, pattern recognition, image processing, integer programming and formation of chemical compounds. In this paper, we study the latest type of metric dimension called as local fractional metric dimension (LFMD) and find its upper bounds for generalized Petersen networks <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n\geq 5$ </tex-math></inline-formula>. Moreover, for <inline-formula> <tex-math notation="LaTeX">$n\in \{5, 8, 10\}$ </tex-math></inline-formula> exact values and for <inline-formula> <tex-math notation="LaTeX">$n\in \{6, 7, 9, 11\}$ </tex-math></inline-formula> constant upper bounds of the LFMD are obtained. For <inline-formula> <tex-math notation="LaTeX">$n\geq 12$ </tex-math></inline-formula>, the limiting values of LFMD for <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula> are also obtained as 2 (bounded) if <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> approaches to infinity.https://ieeexplore.ieee.org/document/9430539/Metric dimensionlocal fractional metric dimensionpetersen networklocal resolving neighborhoods |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohsin Raza Dalal Awadh Alrowaili Muhammad Javaid |
spellingShingle |
Mohsin Raza Dalal Awadh Alrowaili Muhammad Javaid Local Fractional Metric Dimensions of Generalized Petersen Networks IEEE Access Metric dimension local fractional metric dimension petersen network local resolving neighborhoods |
author_facet |
Mohsin Raza Dalal Awadh Alrowaili Muhammad Javaid |
author_sort |
Mohsin Raza |
title |
Local Fractional Metric Dimensions of Generalized Petersen Networks |
title_short |
Local Fractional Metric Dimensions of Generalized Petersen Networks |
title_full |
Local Fractional Metric Dimensions of Generalized Petersen Networks |
title_fullStr |
Local Fractional Metric Dimensions of Generalized Petersen Networks |
title_full_unstemmed |
Local Fractional Metric Dimensions of Generalized Petersen Networks |
title_sort |
local fractional metric dimensions of generalized petersen networks |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2021-01-01 |
description |
Metric dimension is a distance-based tool that is used in the different fields of computer science and chemistry such as navigation, combinatorial optimization, pattern recognition, image processing, integer programming and formation of chemical compounds. In this paper, we study the latest type of metric dimension called as local fractional metric dimension (LFMD) and find its upper bounds for generalized Petersen networks <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n\geq 5$ </tex-math></inline-formula>. Moreover, for <inline-formula> <tex-math notation="LaTeX">$n\in \{5, 8, 10\}$ </tex-math></inline-formula> exact values and for <inline-formula> <tex-math notation="LaTeX">$n\in \{6, 7, 9, 11\}$ </tex-math></inline-formula> constant upper bounds of the LFMD are obtained. For <inline-formula> <tex-math notation="LaTeX">$n\geq 12$ </tex-math></inline-formula>, the limiting values of LFMD for <inline-formula> <tex-math notation="LaTeX">$\mathbb GP(n,2)$ </tex-math></inline-formula> are also obtained as 2 (bounded) if <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> approaches to infinity. |
topic |
Metric dimension local fractional metric dimension petersen network local resolving neighborhoods |
url |
https://ieeexplore.ieee.org/document/9430539/ |
work_keys_str_mv |
AT mohsinraza localfractionalmetricdimensionsofgeneralizedpetersennetworks AT dalalawadhalrowaili localfractionalmetricdimensionsofgeneralizedpetersennetworks AT muhammadjavaid localfractionalmetricdimensionsofgeneralizedpetersennetworks |
_version_ |
1721400137240018944 |