Self-similar conductance patterns in graphene Cantor-like structures

Abstract Graphene has proven to be an ideal system for exotic transport phenomena. In this work, we report another exotic characteristic of the electron transport in graphene. Namely, we show that the linear-regime conductance can present self-similar patterns with well-defined scaling rules, once t...

Full description

Bibliographic Details
Main Authors: H. García-Cervantes, L. M. Gaggero-Sager, D. S. Díaz-Guerrero, O. Sotolongo-Costa, I. Rodríguez-Vargas
Format: Article
Language:English
Published: Nature Publishing Group 2017-04-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-00611-z
id doaj-d2b6223c63164adfad1599933d2a8479
record_format Article
spelling doaj-d2b6223c63164adfad1599933d2a84792020-12-08T00:43:28ZengNature Publishing GroupScientific Reports2045-23222017-04-017111010.1038/s41598-017-00611-zSelf-similar conductance patterns in graphene Cantor-like structuresH. García-Cervantes0L. M. Gaggero-Sager1D. S. Díaz-Guerrero2O. Sotolongo-Costa3I. Rodríguez-Vargas4Centro de Investigación en Ciencias, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de MorelosCIICAp, IICBA, Universidad Autónoma del Estado de MorelosCentro de Investigación en Ciencias, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de MorelosCentro de Investigación en Ciencias, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de MorelosCentro de Investigación en Ciencias, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de MorelosAbstract Graphene has proven to be an ideal system for exotic transport phenomena. In this work, we report another exotic characteristic of the electron transport in graphene. Namely, we show that the linear-regime conductance can present self-similar patterns with well-defined scaling rules, once the graphene sheet is subjected to Cantor-like nanostructuring. As far as we know the mentioned system is one of the few in which a self-similar structure produces self-similar patterns on a physical property. These patterns are analysed quantitatively, by obtaining the scaling rules that underlie them. It is worth noting that the transport properties are an average of the dispersion channels, which makes the existence of scale factors quite surprising. In addition, that self-similarity be manifested in the conductance opens an excellent opportunity to test this fundamental property experimentally.https://doi.org/10.1038/s41598-017-00611-z
collection DOAJ
language English
format Article
sources DOAJ
author H. García-Cervantes
L. M. Gaggero-Sager
D. S. Díaz-Guerrero
O. Sotolongo-Costa
I. Rodríguez-Vargas
spellingShingle H. García-Cervantes
L. M. Gaggero-Sager
D. S. Díaz-Guerrero
O. Sotolongo-Costa
I. Rodríguez-Vargas
Self-similar conductance patterns in graphene Cantor-like structures
Scientific Reports
author_facet H. García-Cervantes
L. M. Gaggero-Sager
D. S. Díaz-Guerrero
O. Sotolongo-Costa
I. Rodríguez-Vargas
author_sort H. García-Cervantes
title Self-similar conductance patterns in graphene Cantor-like structures
title_short Self-similar conductance patterns in graphene Cantor-like structures
title_full Self-similar conductance patterns in graphene Cantor-like structures
title_fullStr Self-similar conductance patterns in graphene Cantor-like structures
title_full_unstemmed Self-similar conductance patterns in graphene Cantor-like structures
title_sort self-similar conductance patterns in graphene cantor-like structures
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2017-04-01
description Abstract Graphene has proven to be an ideal system for exotic transport phenomena. In this work, we report another exotic characteristic of the electron transport in graphene. Namely, we show that the linear-regime conductance can present self-similar patterns with well-defined scaling rules, once the graphene sheet is subjected to Cantor-like nanostructuring. As far as we know the mentioned system is one of the few in which a self-similar structure produces self-similar patterns on a physical property. These patterns are analysed quantitatively, by obtaining the scaling rules that underlie them. It is worth noting that the transport properties are an average of the dispersion channels, which makes the existence of scale factors quite surprising. In addition, that self-similarity be manifested in the conductance opens an excellent opportunity to test this fundamental property experimentally.
url https://doi.org/10.1038/s41598-017-00611-z
work_keys_str_mv AT hgarciacervantes selfsimilarconductancepatternsingraphenecantorlikestructures
AT lmgaggerosager selfsimilarconductancepatternsingraphenecantorlikestructures
AT dsdiazguerrero selfsimilarconductancepatternsingraphenecantorlikestructures
AT osotolongocosta selfsimilarconductancepatternsingraphenecantorlikestructures
AT irodriguezvargas selfsimilarconductancepatternsingraphenecantorlikestructures
_version_ 1724395970371780608