Heat Transfer Analysis and Modification of Thermal Probe for Gas-Solid Measurement

The presented work aims to measure the gas-solid two-phase mass flow-rate in pneumatic conveyor, and a novel modified thermal probe is applied. A new analysis of the local heat transfer coefficients of thermal probe is presented, while traditional investigations focus on global coefficients. Thermal...

Full description

Bibliographic Details
Main Authors: Hong Zhang, Xiangying Qi
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/9071531
Description
Summary:The presented work aims to measure the gas-solid two-phase mass flow-rate in pneumatic conveyor, and a novel modified thermal probe is applied. A new analysis of the local heat transfer coefficients of thermal probe is presented, while traditional investigations focus on global coefficients. Thermal simulations are performed in Fluent 6.2 and temperature distributions of the probe are presented. The results indicate that the probe has obviously stable and unstable heat transfer areas. Based on understanding of probe characteristics, a modified probe structure is designed, which makes the probe output signal more stable and widens the measuring range. The experiments are carried out in a special designed laboratory scale pneumatic conveyor, and the modified probe shows an unambiguous improvement of the performance compared with the traditional one.
ISSN:1024-123X
1563-5147