Thermal analysis in Stokes’ second problem of nanofluid: Applications in thermal engineering

Present study is prepared to analyze the heat transfer for the Stokes’ second problem of nanofluid. Water is taken as base fluid and two types of nanoparticles namely copper (Cu) and silver (Ag) are suspended in it. Exact solutions for velocity field and temperature distribution have been investigat...

Full description

Bibliographic Details
Main Authors: Ilyas Khan, Kashif Ali Abro, M.N. Mirbhar, I. Tlili
Format: Article
Language:English
Published: Elsevier 2018-09-01
Series:Case Studies in Thermal Engineering
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X17303374
Description
Summary:Present study is prepared to analyze the heat transfer for the Stokes’ second problem of nanofluid. Water is taken as base fluid and two types of nanoparticles namely copper (Cu) and silver (Ag) are suspended in it. Exact solutions for velocity field and temperature distribution have been investigated by utilizing the Laplace transform method and presented in the form simple elementary functions. The results lead to the few facts regarding the effects of rheological and pertinent parameters on the graphical illustrations. Heat transfer is decreased with increasing nanoparticles volume fraction. Hartman number and porosity have opposite effects on fluid motion. This study has several applications in thermal engineering. Keywords: Copper (Cu) and silver (Ag), Water, Stokes second problem, Heat transfer
ISSN:2214-157X