Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning

High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.

Bibliographic Details
Main Authors: Xi Xiang, Giulia I. Corsi, Christian Anthon, Kunli Qu, Xiaoguang Pan, Xue Liang, Peng Han, Zhanying Dong, Lijun Liu, Jiayan Zhong, Tao Ma, Jinbao Wang, Xiuqing Zhang, Hui Jiang, Fengping Xu, Xin Liu, Xun Xu, Jian Wang, Huanming Yang, Lars Bolund, George M. Church, Lin Lin, Jan Gorodkin, Yonglun Luo
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-23576-0
id doaj-d2630a00271e4fa5a1f663c1d03d658b
record_format Article
spelling doaj-d2630a00271e4fa5a1f663c1d03d658b2021-05-30T11:14:29ZengNature Publishing GroupNature Communications2041-17232021-05-011211910.1038/s41467-021-23576-0Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learningXi Xiang0Giulia I. Corsi1Christian Anthon2Kunli Qu3Xiaoguang Pan4Xue Liang5Peng Han6Zhanying Dong7Lijun Liu8Jiayan Zhong9Tao Ma10Jinbao Wang11Xiuqing Zhang12Hui Jiang13Fengping Xu14Xin Liu15Xun Xu16Jian Wang17Huanming Yang18Lars Bolund19George M. Church20Lin Lin21Jan Gorodkin22Yonglun Luo23Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoCenter for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of CopenhagenCenter for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of CopenhagenLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoMGI, BGI-ShenzhenMGI, BGI-ShenzhenMGI, BGI-ShenzhenBGI-ShenzhenMGI, BGI-ShenzhenLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoBGI-ShenzhenBGI-ShenzhenBGI-ShenzhenBGI-ShenzhenLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoDepartment of Genetics, Blavatnik Institute, Harvard Medical SchoolLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoCenter for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of CopenhagenLars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-QingdaoHigh-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.https://doi.org/10.1038/s41467-021-23576-0
collection DOAJ
language English
format Article
sources DOAJ
author Xi Xiang
Giulia I. Corsi
Christian Anthon
Kunli Qu
Xiaoguang Pan
Xue Liang
Peng Han
Zhanying Dong
Lijun Liu
Jiayan Zhong
Tao Ma
Jinbao Wang
Xiuqing Zhang
Hui Jiang
Fengping Xu
Xin Liu
Xun Xu
Jian Wang
Huanming Yang
Lars Bolund
George M. Church
Lin Lin
Jan Gorodkin
Yonglun Luo
spellingShingle Xi Xiang
Giulia I. Corsi
Christian Anthon
Kunli Qu
Xiaoguang Pan
Xue Liang
Peng Han
Zhanying Dong
Lijun Liu
Jiayan Zhong
Tao Ma
Jinbao Wang
Xiuqing Zhang
Hui Jiang
Fengping Xu
Xin Liu
Xun Xu
Jian Wang
Huanming Yang
Lars Bolund
George M. Church
Lin Lin
Jan Gorodkin
Yonglun Luo
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
Nature Communications
author_facet Xi Xiang
Giulia I. Corsi
Christian Anthon
Kunli Qu
Xiaoguang Pan
Xue Liang
Peng Han
Zhanying Dong
Lijun Liu
Jiayan Zhong
Tao Ma
Jinbao Wang
Xiuqing Zhang
Hui Jiang
Fengping Xu
Xin Liu
Xun Xu
Jian Wang
Huanming Yang
Lars Bolund
George M. Church
Lin Lin
Jan Gorodkin
Yonglun Luo
author_sort Xi Xiang
title Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_short Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_full Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_fullStr Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_full_unstemmed Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
title_sort enhancing crispr-cas9 grna efficiency prediction by data integration and deep learning
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-05-01
description High-quality gRNA activity data is needed for accurate on-target efficiency predictions. Here the authors generate activity data for over 10,000 gRNA and build a deep learning model CRISPRon for improved performance predictions.
url https://doi.org/10.1038/s41467-021-23576-0
work_keys_str_mv AT xixiang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT giuliaicorsi enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT christiananthon enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT kunliqu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xiaoguangpan enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xueliang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT penghan enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT zhanyingdong enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT lijunliu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jiayanzhong enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT taoma enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jinbaowang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xiuqingzhang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT huijiang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT fengpingxu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xinliu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT xunxu enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jianwang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT huanmingyang enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT larsbolund enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT georgemchurch enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT linlin enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT jangorodkin enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
AT yonglunluo enhancingcrisprcas9grnaefficiencypredictionbydataintegrationanddeeplearning
_version_ 1721420649844441088