Lateral stability control of distributed driven electric vehicle based on sliding mode control
Aiming at the lateral stability control problem of distributed driven electric vehicles under high speed steering condition, a hierarchical control algorithm of direct yaw moment is designed. The upper control takes the 2-DOF vehicle model as the reference model and uses the sliding mode control to...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/28/e3sconf_pgsge2021_01044.pdf |
Summary: | Aiming at the lateral stability control problem of distributed driven electric vehicles under high speed steering condition, a hierarchical control algorithm of direct yaw moment is designed. The upper control takes the 2-DOF vehicle model as the reference model and uses the sliding mode control to obtain the required yaw moment by tracking the desired yaw velocity and the desired vehicle side-slip angle. The lower control optimizes the distribution of four wheel torque with the minimum tire utilization rate. Finally, Carsim/Simulink was used for model building and co-simulation, and the control effect of PID algorithm was compared. The results show the hierarchical control algorithm achieves the expected goal of improving vehicle lateral stability. |
---|---|
ISSN: | 2267-1242 |