Channel Characteristics of Rail Traffic Tunnel Scenarios Based on Ray-Tracing Simulator

The tunnel scenario is a major rail communication scenario. In this paper, the radio channel characteristics of tunnel scenarios with different carrier frequencies, different distances between the transmitter (Tx) and receiver (Rx), and cross sections are simulated with a ray-tracing tool. Key param...

Full description

Bibliographic Details
Main Authors: Jinmeng Zhao, Lei Xiong, Danping He, Jiadong Du
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2018/9284639
Description
Summary:The tunnel scenario is a major rail communication scenario. In this paper, the radio channel characteristics of tunnel scenarios with different carrier frequencies, different distances between the transmitter (Tx) and receiver (Rx), and cross sections are simulated with a ray-tracing tool. Key parameters such as path loss, Rician K-factor, root mean square (RMS) delay spread, and angular spread are studied. According to the results, higher frequencies introduce larger path loss and the presence of the vehicle body increases the path loss by about 35 dB in the scenario; at the same time it will also cause the fluctuation and instability of the path loss. Besides, the influence of reflections from the side walls is significant on radio propagation. The channel experiences more severe fading in a narrow tunnel compared with others.
ISSN:1530-8669
1530-8677