Effect of heat pipe failure on performance of residual heatremoval system with heat pipe for small lead-based reactor

Heat pipe have the characteristics of high thermal conductivity, high safety performance, without external power, etc. In this paper, The numerical simulation CFD software FLUENT is used to study the thermal-hydraulic characteristics performance of heat pipe waste heat removal system with heat pipe...

Full description

Bibliographic Details
Main Authors: Hu Chongju, Wang Hongyan, Wu Bo, Zhang Xiuxiang, Zhang Pinghua
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/24/e3sconf_caes2021_01021.pdf
Description
Summary:Heat pipe have the characteristics of high thermal conductivity, high safety performance, without external power, etc. In this paper, The numerical simulation CFD software FLUENT is used to study the thermal-hydraulic characteristics performance of heat pipe waste heat removal system with heat pipe for lead-based reactor under normal conditions and Station-Black-Out (SBO) with partial heat pipes damage respectively. Results showed that heat pipes promote heat transfer in the reactor and reduced the temperature of the fluid around the reactor during normal operation; Heat in the core could be removed smoothly by the PRHRS during SBO accident without heat pipe damage ; and when the proportion of failed heat pipes is less than 50% during SBO accident , the PRHRS could still ensure safe operation of the reactor and the distribution of failed heat pipes in the reactor results the core temperature variation by less than 5 K.
ISSN:2267-1242