Gender Classification Based on Multiscale Facial Fusion Feature

For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generate...

Full description

Bibliographic Details
Main Authors: Chunyu Zhang, Hui Ding, Yuanyuan Shang, Zhuhong Shao, Xiaoyan Fu
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/1924151
Description
Summary:For gender classification, we present a new approach based on Multiscale facial fusion feature (MS3F) to classify gender from face images. Fusion feature is extracted by the combination of Local Binary Pattern (LBP) and Local Phase Quantization (LPQ) descriptors, and a multiscale feature is generated through Multiblock (MB) and Multilevel (ML) methods. Support Vector Machine (SVM) is employed as the classifier to conduct gender classification. All the experiments are performed based on the Images of Groups (IoG) dataset. The results demonstrate that the application of Multiscale fusion feature greatly improves the performance of gender classification, and our approach outperforms the state-of-the-art techniques.
ISSN:1024-123X
1563-5147