Impact of CD14 on Reactive Oxygen Species Production from Human Leukocytes Primed by Escherichia coli Lipopolysaccharides
Lipopolysaccharides (LPS) from Gram-negative bacteria prime human polymorphonuclear neutrophils (PMNs) via multicomponent receptor cluster including CD14 and MD-2·TLR4 for the enhanced release of reactive oxygen species (ROS) were triggered by bacterial derived peptide N-formyl-methionyl-leucyl-phen...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Oxidative Medicine and Cellular Longevity |
Online Access: | http://dx.doi.org/10.1155/2019/6043245 |
Summary: | Lipopolysaccharides (LPS) from Gram-negative bacteria prime human polymorphonuclear neutrophils (PMNs) via multicomponent receptor cluster including CD14 and MD-2·TLR4 for the enhanced release of reactive oxygen species (ROS) were triggered by bacterial derived peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP). In this study, we investigated the impact of CD14 on LPS-induced priming of human PMNs for fMLP-triggered ROS generation (respiratory or oxidative) burst. Monoclonal antibodies against human CD14 (mAbs) as well as isotype-matched IgG2a did not influence significantly fMLP-triggered ROS production from LPS-unprimed PMNs. Anti-CD14 mAbs (clone UCHM-1) attenuated LPS-induced priming of PMNs as it had been mirrored by fMLP-triggered decrease of ROS production. Similar priming activity of S-LPS or Re-LPS from Escherichia coli for fMLP-triggered ROS release from PMNs was found. Obtained results suggest that glycosylphosphatidylinositol-anchored CD14 is the key player in LPS-induced PMN priming for fMLP-triggered ROS production. We believe that blockade of CD14 on the cell surface and clinical use of anti-CD14 mAbs or their Fab fragments may diminish the production of ROS and improve outcomes during cardiovascular diseases manifested by LPS-induced inflammation. |
---|---|
ISSN: | 1942-0900 1942-0994 |