Differential Privacy for Edge Weights in Social Networks

Social networks can be analyzed to discover important social issues; however, it will cause privacy disclosure in the process. The edge weights play an important role in social graphs, which are associated with sensitive information (e.g., the price of commercial trade). In the paper, we propose the...

Full description

Bibliographic Details
Main Authors: Xiaoye Li, Jing Yang, Zhenlong Sun, Jianpei Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Security and Communication Networks
Online Access:http://dx.doi.org/10.1155/2017/4267921
Description
Summary:Social networks can be analyzed to discover important social issues; however, it will cause privacy disclosure in the process. The edge weights play an important role in social graphs, which are associated with sensitive information (e.g., the price of commercial trade). In the paper, we propose the MB-CI (Merging Barrels and Consistency Inference) strategy to protect weighted social graphs. By viewing the edge-weight sequence as an unattributed histogram, differential privacy for edge weights can be implemented based on the histogram. Considering that some edges have the same weight in a social network, we merge the barrels with the same count into one group to reduce the noise required. Moreover, k-indistinguishability between groups is proposed to fulfill differential privacy not to be violated, because simple merging operation may disclose some information by the magnitude of noise itself. For keeping most of the shortest paths unchanged, we do consistency inference according to original order of the sequence as an important postprocessing step. Experimental results show that the proposed approach effectively improved the accuracy and utility of the released data.
ISSN:1939-0114
1939-0122