Determining minimal output sets that ensure structural identifiability.
The process of inferring parameter values from experimental data can be a cumbersome task. In addition, the collection of experimental data can be time consuming and costly. This paper covers both these issues by addressing the following question: "Which experimental outputs should be measured...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6231658?pdf=render |
Summary: | The process of inferring parameter values from experimental data can be a cumbersome task. In addition, the collection of experimental data can be time consuming and costly. This paper covers both these issues by addressing the following question: "Which experimental outputs should be measured to ensure that unique model parameters can be calculated?". Stated formally, we examine the topic of minimal output sets that guarantee a model's structural identifiability. To that end, we introduce an algorithm that guides a researcher as to which model outputs to measure. Our algorithm consists of an iterative structural identifiability analysis and can determine multiple minimal output sets of a model. This choice in different output sets offers researchers flexibility during experimental design. Our method can determine minimal output sets of large differential equation models within short computational times. |
---|---|
ISSN: | 1932-6203 |