Some reverse mean inequalities for operators and matrices
Abstract In this paper, we present some new reverse arithmetic–geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other inequalities, we prove that if A,B∈B(H) $A, B\in B(\mathcal{H})$ are accretive and 0<mI≤ℜ(A),ℜ(B)≤MI $0< {mI}\le \Re (A)...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-04-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-019-2070-2 |
id |
doaj-d1f495972381471c9e41b6bd88ab9784 |
---|---|
record_format |
Article |
spelling |
doaj-d1f495972381471c9e41b6bd88ab97842020-11-25T03:52:50ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-04-012019111210.1186/s13660-019-2070-2Some reverse mean inequalities for operators and matricesChaojun Yang0Yaxin Gao1Fangyan Lu2Department of Mathematics, Soochow UniversityDepartment of Mathematics, Soochow UniversityDepartment of Mathematics, Soochow UniversityAbstract In this paper, we present some new reverse arithmetic–geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other inequalities, we prove that if A,B∈B(H) $A, B\in B(\mathcal{H})$ are accretive and 0<mI≤ℜ(A),ℜ(B)≤MI $0< {mI}\le \Re (A), \Re (B)\le {MI}$, then, for every positive unital linear map Φ, Φ2(ℜ(A+B2))≤(K(h))2Φ2(ℜ(A♯B)), $$\begin{aligned} \varPhi ^{2} \biggl(\Re \biggl(\frac{A+B}{2} \biggr) \biggr)\le \bigl(K(h) \bigr)^{2}\varPhi ^{2} \bigl(\Re (A\sharp B) \bigr), \end{aligned}$$ where K(h)=(h+1)24h $K(h)=\frac{(h+1)^{2}}{4h}$ and h=Mm $h=\frac{M}{m}$. Moreover, some reverse harmonic–geometric mean inequalities are also presented.http://link.springer.com/article/10.1186/s13660-019-2070-2Positive linear mapsArithmetic–geometric–harmonic meanSector matrixInequality |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chaojun Yang Yaxin Gao Fangyan Lu |
spellingShingle |
Chaojun Yang Yaxin Gao Fangyan Lu Some reverse mean inequalities for operators and matrices Journal of Inequalities and Applications Positive linear maps Arithmetic–geometric–harmonic mean Sector matrix Inequality |
author_facet |
Chaojun Yang Yaxin Gao Fangyan Lu |
author_sort |
Chaojun Yang |
title |
Some reverse mean inequalities for operators and matrices |
title_short |
Some reverse mean inequalities for operators and matrices |
title_full |
Some reverse mean inequalities for operators and matrices |
title_fullStr |
Some reverse mean inequalities for operators and matrices |
title_full_unstemmed |
Some reverse mean inequalities for operators and matrices |
title_sort |
some reverse mean inequalities for operators and matrices |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2019-04-01 |
description |
Abstract In this paper, we present some new reverse arithmetic–geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other inequalities, we prove that if A,B∈B(H) $A, B\in B(\mathcal{H})$ are accretive and 0<mI≤ℜ(A),ℜ(B)≤MI $0< {mI}\le \Re (A), \Re (B)\le {MI}$, then, for every positive unital linear map Φ, Φ2(ℜ(A+B2))≤(K(h))2Φ2(ℜ(A♯B)), $$\begin{aligned} \varPhi ^{2} \biggl(\Re \biggl(\frac{A+B}{2} \biggr) \biggr)\le \bigl(K(h) \bigr)^{2}\varPhi ^{2} \bigl(\Re (A\sharp B) \bigr), \end{aligned}$$ where K(h)=(h+1)24h $K(h)=\frac{(h+1)^{2}}{4h}$ and h=Mm $h=\frac{M}{m}$. Moreover, some reverse harmonic–geometric mean inequalities are also presented. |
topic |
Positive linear maps Arithmetic–geometric–harmonic mean Sector matrix Inequality |
url |
http://link.springer.com/article/10.1186/s13660-019-2070-2 |
work_keys_str_mv |
AT chaojunyang somereversemeaninequalitiesforoperatorsandmatrices AT yaxingao somereversemeaninequalitiesforoperatorsandmatrices AT fangyanlu somereversemeaninequalitiesforoperatorsandmatrices |
_version_ |
1724480685206405120 |