Some reverse mean inequalities for operators and matrices

Abstract In this paper, we present some new reverse arithmetic–geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other inequalities, we prove that if A,B∈B(H) $A, B\in B(\mathcal{H})$ are accretive and 0<mI≤ℜ(A),ℜ(B)≤MI $0< {mI}\le \Re (A)...

Full description

Bibliographic Details
Main Authors: Chaojun Yang, Yaxin Gao, Fangyan Lu
Format: Article
Language:English
Published: SpringerOpen 2019-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-019-2070-2
id doaj-d1f495972381471c9e41b6bd88ab9784
record_format Article
spelling doaj-d1f495972381471c9e41b6bd88ab97842020-11-25T03:52:50ZengSpringerOpenJournal of Inequalities and Applications1029-242X2019-04-012019111210.1186/s13660-019-2070-2Some reverse mean inequalities for operators and matricesChaojun Yang0Yaxin Gao1Fangyan Lu2Department of Mathematics, Soochow UniversityDepartment of Mathematics, Soochow UniversityDepartment of Mathematics, Soochow UniversityAbstract In this paper, we present some new reverse arithmetic–geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other inequalities, we prove that if A,B∈B(H) $A, B\in B(\mathcal{H})$ are accretive and 0<mI≤ℜ(A),ℜ(B)≤MI $0< {mI}\le \Re (A), \Re (B)\le {MI}$, then, for every positive unital linear map Φ, Φ2(ℜ(A+B2))≤(K(h))2Φ2(ℜ(A♯B)), $$\begin{aligned} \varPhi ^{2} \biggl(\Re \biggl(\frac{A+B}{2} \biggr) \biggr)\le \bigl(K(h) \bigr)^{2}\varPhi ^{2} \bigl(\Re (A\sharp B) \bigr), \end{aligned}$$ where K(h)=(h+1)24h $K(h)=\frac{(h+1)^{2}}{4h}$ and h=Mm $h=\frac{M}{m}$. Moreover, some reverse harmonic–geometric mean inequalities are also presented.http://link.springer.com/article/10.1186/s13660-019-2070-2Positive linear mapsArithmetic–geometric–harmonic meanSector matrixInequality
collection DOAJ
language English
format Article
sources DOAJ
author Chaojun Yang
Yaxin Gao
Fangyan Lu
spellingShingle Chaojun Yang
Yaxin Gao
Fangyan Lu
Some reverse mean inequalities for operators and matrices
Journal of Inequalities and Applications
Positive linear maps
Arithmetic–geometric–harmonic mean
Sector matrix
Inequality
author_facet Chaojun Yang
Yaxin Gao
Fangyan Lu
author_sort Chaojun Yang
title Some reverse mean inequalities for operators and matrices
title_short Some reverse mean inequalities for operators and matrices
title_full Some reverse mean inequalities for operators and matrices
title_fullStr Some reverse mean inequalities for operators and matrices
title_full_unstemmed Some reverse mean inequalities for operators and matrices
title_sort some reverse mean inequalities for operators and matrices
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2019-04-01
description Abstract In this paper, we present some new reverse arithmetic–geometric mean inequalities for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other inequalities, we prove that if A,B∈B(H) $A, B\in B(\mathcal{H})$ are accretive and 0<mI≤ℜ(A),ℜ(B)≤MI $0< {mI}\le \Re (A), \Re (B)\le {MI}$, then, for every positive unital linear map Φ, Φ2(ℜ(A+B2))≤(K(h))2Φ2(ℜ(A♯B)), $$\begin{aligned} \varPhi ^{2} \biggl(\Re \biggl(\frac{A+B}{2} \biggr) \biggr)\le \bigl(K(h) \bigr)^{2}\varPhi ^{2} \bigl(\Re (A\sharp B) \bigr), \end{aligned}$$ where K(h)=(h+1)24h $K(h)=\frac{(h+1)^{2}}{4h}$ and h=Mm $h=\frac{M}{m}$. Moreover, some reverse harmonic–geometric mean inequalities are also presented.
topic Positive linear maps
Arithmetic–geometric–harmonic mean
Sector matrix
Inequality
url http://link.springer.com/article/10.1186/s13660-019-2070-2
work_keys_str_mv AT chaojunyang somereversemeaninequalitiesforoperatorsandmatrices
AT yaxingao somereversemeaninequalitiesforoperatorsandmatrices
AT fangyanlu somereversemeaninequalitiesforoperatorsandmatrices
_version_ 1724480685206405120