Amine Analysis Using AlexaFluor 488 Succinimidyl Ester and Capillary Electrophoresis with Laser-Induced Fluorescence

Fluorescent probes enable detection of otherwise nonfluorescent species via highly sensitive laser-induced fluorescence. Organic amines are predominantly nonfluorescent and are of analytical interest in agricultural and food science, biomedical applications, and biowarfare detection. Alexa Fluor 48...

Full description

Bibliographic Details
Main Authors: Christian G. Kendall, Amanda M. Stockton, Stephen Leicht, Heather McCaig, Shirley Chung, Valerie Scott, Fang Zhong, Ying Lin
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Analytical Methods in Chemistry
Online Access:http://dx.doi.org/10.1155/2015/368362
Description
Summary:Fluorescent probes enable detection of otherwise nonfluorescent species via highly sensitive laser-induced fluorescence. Organic amines are predominantly nonfluorescent and are of analytical interest in agricultural and food science, biomedical applications, and biowarfare detection. Alexa Fluor 488 N-hydroxysuccinimidyl ester (AF488 NHS-ester) is an amine-specific fluorescent probe. Here, we demonstrate low limit of detection of long-chain (C9 to C18) primary amines and optimize AF488 derivatization of long-chain primary amines. The reaction was found to be equally efficient in all solvents studied (dimethylsulfoxide, ethanol, and N,N-dimethylformamide). While an organic base (N,N-diisopropylethylamine) is required to achieve efficient reaction between AF488 NHS-ester and organic amines with longer hydrophobic chains, high concentrations (>5 mM) result in increased levels of ethylamine and propylamine in the blank. Optimal incubation times were found to be >12 hrs at room temperature. We present an initial capillary electrophoresis separation for analysis using a simple micellar electrokinetic chromatography (MEKC) buffer consisting of 12 mM sodium dodecylsulfate (SDS) and 5 mM carbonate, pH 10. Limits of detection using the optimized labeling conditions and these separation conditions were 5–17 nM. The method presented here represents a novel addition to the arsenal of fluorescent probes available for highly sensitive analysis of small organic molecules.
ISSN:2090-8865
2090-8873