Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
Abstract In this paper, we find the least value α and the greatest value β such that the double inequality P α ( a , b ) T 1 − α ( a , b ) < M ( a , b ) < P β ( a , b ) T 1 − β ( a , b ) $$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$ holds for all a , b >...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-015-0955-2 |
id |
doaj-d1ccd696a5904d8c80d6aa782eba7a4a |
---|---|
record_format |
Article |
spelling |
doaj-d1ccd696a5904d8c80d6aa782eba7a4a2020-11-24T20:56:04ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-01-012016111110.1186/s13660-015-0955-2Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert meansHua-Ying Huang0Nan Wang1Bo-Yong Long2School of Mathematical Science, Anhui UniversitySchool of Mathematical Science, Anhui UniversitySchool of Mathematical Science, Anhui UniversityAbstract In this paper, we find the least value α and the greatest value β such that the double inequality P α ( a , b ) T 1 − α ( a , b ) < M ( a , b ) < P β ( a , b ) T 1 − β ( a , b ) $$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$ holds for all a , b > 0 $a,b>0$ with a ≠ b $a\neq b$ , where M ( a , b ) $M(a,b)$ , P ( a , b ) $P(a,b)$ , and T ( a , b ) $T(a,b)$ are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.http://link.springer.com/article/10.1186/s13660-015-0955-2Neuman-Sándor meanthe first Seiffert meanthe second Seiffert mean |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hua-Ying Huang Nan Wang Bo-Yong Long |
spellingShingle |
Hua-Ying Huang Nan Wang Bo-Yong Long Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means Journal of Inequalities and Applications Neuman-Sándor mean the first Seiffert mean the second Seiffert mean |
author_facet |
Hua-Ying Huang Nan Wang Bo-Yong Long |
author_sort |
Hua-Ying Huang |
title |
Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means |
title_short |
Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means |
title_full |
Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means |
title_fullStr |
Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means |
title_full_unstemmed |
Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means |
title_sort |
optimal bounds for neuman-sándor mean in terms of the geometric convex combination of two seiffert means |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2016-01-01 |
description |
Abstract In this paper, we find the least value α and the greatest value β such that the double inequality P α ( a , b ) T 1 − α ( a , b ) < M ( a , b ) < P β ( a , b ) T 1 − β ( a , b ) $$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$ holds for all a , b > 0 $a,b>0$ with a ≠ b $a\neq b$ , where M ( a , b ) $M(a,b)$ , P ( a , b ) $P(a,b)$ , and T ( a , b ) $T(a,b)$ are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively. |
topic |
Neuman-Sándor mean the first Seiffert mean the second Seiffert mean |
url |
http://link.springer.com/article/10.1186/s13660-015-0955-2 |
work_keys_str_mv |
AT huayinghuang optimalboundsforneumansandormeanintermsofthegeometricconvexcombinationoftwoseiffertmeans AT nanwang optimalboundsforneumansandormeanintermsofthegeometricconvexcombinationoftwoseiffertmeans AT boyonglong optimalboundsforneumansandormeanintermsofthegeometricconvexcombinationoftwoseiffertmeans |
_version_ |
1716790896986423296 |