Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means

Abstract In this paper, we find the least value α and the greatest value β such that the double inequality P α ( a , b ) T 1 − α ( a , b ) < M ( a , b ) < P β ( a , b ) T 1 − β ( a , b ) $$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$ holds for all a , b >...

Full description

Bibliographic Details
Main Authors: Hua-Ying Huang, Nan Wang, Bo-Yong Long
Format: Article
Language:English
Published: SpringerOpen 2016-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-015-0955-2
id doaj-d1ccd696a5904d8c80d6aa782eba7a4a
record_format Article
spelling doaj-d1ccd696a5904d8c80d6aa782eba7a4a2020-11-24T20:56:04ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-01-012016111110.1186/s13660-015-0955-2Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert meansHua-Ying Huang0Nan Wang1Bo-Yong Long2School of Mathematical Science, Anhui UniversitySchool of Mathematical Science, Anhui UniversitySchool of Mathematical Science, Anhui UniversityAbstract In this paper, we find the least value α and the greatest value β such that the double inequality P α ( a , b ) T 1 − α ( a , b ) < M ( a , b ) < P β ( a , b ) T 1 − β ( a , b ) $$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$ holds for all a , b > 0 $a,b>0$ with a ≠ b $a\neq b$ , where M ( a , b ) $M(a,b)$ , P ( a , b ) $P(a,b)$ , and T ( a , b ) $T(a,b)$ are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.http://link.springer.com/article/10.1186/s13660-015-0955-2Neuman-Sándor meanthe first Seiffert meanthe second Seiffert mean
collection DOAJ
language English
format Article
sources DOAJ
author Hua-Ying Huang
Nan Wang
Bo-Yong Long
spellingShingle Hua-Ying Huang
Nan Wang
Bo-Yong Long
Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
Journal of Inequalities and Applications
Neuman-Sándor mean
the first Seiffert mean
the second Seiffert mean
author_facet Hua-Ying Huang
Nan Wang
Bo-Yong Long
author_sort Hua-Ying Huang
title Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
title_short Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
title_full Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
title_fullStr Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
title_full_unstemmed Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means
title_sort optimal bounds for neuman-sándor mean in terms of the geometric convex combination of two seiffert means
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2016-01-01
description Abstract In this paper, we find the least value α and the greatest value β such that the double inequality P α ( a , b ) T 1 − α ( a , b ) < M ( a , b ) < P β ( a , b ) T 1 − β ( a , b ) $$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$ holds for all a , b > 0 $a,b>0$ with a ≠ b $a\neq b$ , where M ( a , b ) $M(a,b)$ , P ( a , b ) $P(a,b)$ , and T ( a , b ) $T(a,b)$ are the Neuman-Sándor, the first and second Seiffert means of two positive numbers a and b, respectively.
topic Neuman-Sándor mean
the first Seiffert mean
the second Seiffert mean
url http://link.springer.com/article/10.1186/s13660-015-0955-2
work_keys_str_mv AT huayinghuang optimalboundsforneumansandormeanintermsofthegeometricconvexcombinationoftwoseiffertmeans
AT nanwang optimalboundsforneumansandormeanintermsofthegeometricconvexcombinationoftwoseiffertmeans
AT boyonglong optimalboundsforneumansandormeanintermsofthegeometricconvexcombinationoftwoseiffertmeans
_version_ 1716790896986423296