Dynamics Modeling and Simulation of a Net Closing Mechanism for Tether-Net Capture
Tether-net is a promising active debris removal technique, and a closing mechanism can ensure the reliable wrapping of space debris by using tether-net. This study focuses on the dynamics model of the split closing mechanism and the sliding joint between thread and ring. First, a new kind of closing...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/8827141 |
Summary: | Tether-net is a promising active debris removal technique, and a closing mechanism can ensure the reliable wrapping of space debris by using tether-net. This study focuses on the dynamics model of the split closing mechanism and the sliding joint between thread and ring. First, a new kind of closing mechanism is proposed, which drives the closing thread to close the net mouth through the split masses, and the mass-spring-damper method is used to model tether-net. Thereafter, for the first time, the model of thread-ring sliding joint is proposed based on the mass-spring-damper method, which can be used to simulate the closing process of tether-net. Finally, one-edge closure experiment of the net is carried out and the experimental results are compared with the simulation results, and the closing process of the tether-net is simulated by using the thread-ring sliding joint. Results reveal that the thread-ring sliding joint can be used to simulate the relative slip between the thread and the ring, and the tether-net can wrap the target reliably in a short time by using the split closing system. The split closing mechanism can make it possible for the tether-net to close successfully, whether it starts to work before or after the net contacts with the target. |
---|---|
ISSN: | 1687-5966 1687-5974 |