On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter

Abstract Inverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset WB([a,b]) $W_{B}([a,b])$ can uniquely determine the operator up to a constant translation of eigen...

Full description

Bibliographic Details
Main Authors: Yu Ping Wang, Ko Ya Lien, Chung Tsun Shieh
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-0948-4
id doaj-d19ad53928a74aa0b48af22d6027bbf7
record_format Article
spelling doaj-d19ad53928a74aa0b48af22d6027bbf72020-11-24T22:08:44ZengSpringerOpenBoundary Value Problems1687-27702018-03-012018111110.1186/s13661-018-0948-4On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameterYu Ping Wang0Ko Ya Lien1Chung Tsun Shieh2Department of Applied Mathematics, Nanjing Forestry UniversityDepartment of Mathematics, Tamkang UniversityDepartment of Mathematics, Tamkang UniversityAbstract Inverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset WB([a,b]) $W_{B}([a,b])$ can uniquely determine the operator up to a constant translation of eigenparameter and potential, where [a,b] $[a,b]$ is an arbitrary interval which contains the middle point of the domain of the operator and B is a subset of N $\mathbb {N}$ which satisfies some condition (see Theorem 4.2).http://link.springer.com/article/10.1186/s13661-018-0948-4Inverse spectral problemInverse nodal problemSpectral parameterPotentialWeyl m-function
collection DOAJ
language English
format Article
sources DOAJ
author Yu Ping Wang
Ko Ya Lien
Chung Tsun Shieh
spellingShingle Yu Ping Wang
Ko Ya Lien
Chung Tsun Shieh
On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
Boundary Value Problems
Inverse spectral problem
Inverse nodal problem
Spectral parameter
Potential
Weyl m-function
author_facet Yu Ping Wang
Ko Ya Lien
Chung Tsun Shieh
author_sort Yu Ping Wang
title On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
title_short On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
title_full On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
title_fullStr On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
title_full_unstemmed On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
title_sort on a uniqueness theorem of sturm–liouville equations with boundary conditions polynomially dependent on the spectral parameter
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2018-03-01
description Abstract Inverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset WB([a,b]) $W_{B}([a,b])$ can uniquely determine the operator up to a constant translation of eigenparameter and potential, where [a,b] $[a,b]$ is an arbitrary interval which contains the middle point of the domain of the operator and B is a subset of N $\mathbb {N}$ which satisfies some condition (see Theorem 4.2).
topic Inverse spectral problem
Inverse nodal problem
Spectral parameter
Potential
Weyl m-function
url http://link.springer.com/article/10.1186/s13661-018-0948-4
work_keys_str_mv AT yupingwang onauniquenesstheoremofsturmliouvilleequationswithboundaryconditionspolynomiallydependentonthespectralparameter
AT koyalien onauniquenesstheoremofsturmliouvilleequationswithboundaryconditionspolynomiallydependentonthespectralparameter
AT chungtsunshieh onauniquenesstheoremofsturmliouvilleequationswithboundaryconditionspolynomiallydependentonthespectralparameter
_version_ 1725814955292229632