On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
Abstract Inverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset WB([a,b]) $W_{B}([a,b])$ can uniquely determine the operator up to a constant translation of eigen...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-03-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-018-0948-4 |
id |
doaj-d19ad53928a74aa0b48af22d6027bbf7 |
---|---|
record_format |
Article |
spelling |
doaj-d19ad53928a74aa0b48af22d6027bbf72020-11-24T22:08:44ZengSpringerOpenBoundary Value Problems1687-27702018-03-012018111110.1186/s13661-018-0948-4On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameterYu Ping Wang0Ko Ya Lien1Chung Tsun Shieh2Department of Applied Mathematics, Nanjing Forestry UniversityDepartment of Mathematics, Tamkang UniversityDepartment of Mathematics, Tamkang UniversityAbstract Inverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset WB([a,b]) $W_{B}([a,b])$ can uniquely determine the operator up to a constant translation of eigenparameter and potential, where [a,b] $[a,b]$ is an arbitrary interval which contains the middle point of the domain of the operator and B is a subset of N $\mathbb {N}$ which satisfies some condition (see Theorem 4.2).http://link.springer.com/article/10.1186/s13661-018-0948-4Inverse spectral problemInverse nodal problemSpectral parameterPotentialWeyl m-function |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yu Ping Wang Ko Ya Lien Chung Tsun Shieh |
spellingShingle |
Yu Ping Wang Ko Ya Lien Chung Tsun Shieh On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter Boundary Value Problems Inverse spectral problem Inverse nodal problem Spectral parameter Potential Weyl m-function |
author_facet |
Yu Ping Wang Ko Ya Lien Chung Tsun Shieh |
author_sort |
Yu Ping Wang |
title |
On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter |
title_short |
On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter |
title_full |
On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter |
title_fullStr |
On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter |
title_full_unstemmed |
On a uniqueness theorem of Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter |
title_sort |
on a uniqueness theorem of sturm–liouville equations with boundary conditions polynomially dependent on the spectral parameter |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2018-03-01 |
description |
Abstract Inverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset WB([a,b]) $W_{B}([a,b])$ can uniquely determine the operator up to a constant translation of eigenparameter and potential, where [a,b] $[a,b]$ is an arbitrary interval which contains the middle point of the domain of the operator and B is a subset of N $\mathbb {N}$ which satisfies some condition (see Theorem 4.2). |
topic |
Inverse spectral problem Inverse nodal problem Spectral parameter Potential Weyl m-function |
url |
http://link.springer.com/article/10.1186/s13661-018-0948-4 |
work_keys_str_mv |
AT yupingwang onauniquenesstheoremofsturmliouvilleequationswithboundaryconditionspolynomiallydependentonthespectralparameter AT koyalien onauniquenesstheoremofsturmliouvilleequationswithboundaryconditionspolynomiallydependentonthespectralparameter AT chungtsunshieh onauniquenesstheoremofsturmliouvilleequationswithboundaryconditionspolynomiallydependentonthespectralparameter |
_version_ |
1725814955292229632 |