Summary: | The present study delivers the mathematical model and theoretical analysis of a three-dimensional flow in a free convection for an electrically conducting incompressible second-grade fluid through a very high porous medium circumscribed by an infinite vertical porous plate subject to a constant suction. A uniform magnetic field along the normal to the surface of plate is applied. Periodic permeability for the medium is assumed, while velocity of free stream is taken to be uniform. Analytic expressions are presented for velocity and temperature fields, pressure, and skin friction components by perturbation technique. The impacts on these physical quantities by the physical parameters existing in the model are discussed and envisioned graphically. It is interesting to note that elastic and permeability parameters are able to control the skin friction along the main flow direction, magnetic field to reduce the pressure, and Reynolds number to control the thermal boundary layer thickness. It is also noted that temperature distribution does not depend upon permeability parameter.
|