Electrical discharge machining of Al-TiB2 with a low-frequency vibrating tool

Aluminum-based composite reinforced materials produced in situ with titanium boride (TiB2) particulates have higher potential for advanced structural applications where high specific strength modulus as well as superior temperature resistance is imperative. In the present work, aluminum alloy-titani...

Full description

Bibliographic Details
Main Authors: Prabu M., Ramadoss G., Narendersingh P., Christy T.V., Eswaran V. Vedhagiri
Format: Article
Language:English
Published: De Gruyter 2014-06-01
Series:Science and Engineering of Composite Materials
Subjects:
Online Access:https://doi.org/10.1515/secm-2013-0023
Description
Summary:Aluminum-based composite reinforced materials produced in situ with titanium boride (TiB2) particulates have higher potential for advanced structural applications where high specific strength modulus as well as superior temperature resistance is imperative. In the present work, aluminum alloy-titanium boride composites were developed using a new combination of in situ techniques. Electrical discharge machining studies were conducted on aluminum alloy-TiB2 composite workpieces using a brass electrode. From the results, it is clear that the material removal rate and surface cracks of the workpiece increase with an increase in current and decreases with increase in the composition of titanium boride.
ISSN:0792-1233
2191-0359