Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator

In this paper we study the following nonlinear boundary-value problem \[-\Delta_{p(x)} u=\lambda f(x,u) \quad \text{ in } \Omega,\] \[|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}+\beta(x)|u|^{p(x)-2}u=\mu g(x,u) \quad \text{ on } \partial\Omega,\] where \(\Omega\subset\mathbb{R}^N\) is a bound...

Full description

Bibliographic Details
Main Authors: Najib Tsouli, Omar Darhouche
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2014-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol34/3/art/opuscula_math_3438.pdf
id doaj-d17708ac37bb47e5ba6f88710349c512
record_format Article
spelling doaj-d17708ac37bb47e5ba6f88710349c5122020-11-24T22:54:32ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742014-01-01343621638http://dx.doi.org/10.7494/OpMath.2014.34.3.6213438Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operatorNajib Tsouli0Omar Darhouche1Department of Mathematics, University Mohamed I, Oujda, MoroccoDepartment of Mathematics, University Mohamed I, Oujda, MoroccoIn this paper we study the following nonlinear boundary-value problem \[-\Delta_{p(x)} u=\lambda f(x,u) \quad \text{ in } \Omega,\] \[|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}+\beta(x)|u|^{p(x)-2}u=\mu g(x,u) \quad \text{ on } \partial\Omega,\] where \(\Omega\subset\mathbb{R}^N\) is a bounded domain with smooth boundary \(\partial\Omega\), \(\frac{\partial u}{\partial\nu}\) is the outer unit normal derivative on \(\partial\Omega\), \(\lambda, \mu\) are two real numbers such that \(\lambda^{2}+\mu^{2}\neq0\), \(p\) is a continuous function on \(\overline{\Omega}\) with \(\inf_{x\in \overline{\Omega}} p(x)\gt 1\), \(\beta\in L^{\infty}(\partial\Omega)\) with \(\beta^{-}:=\inf_{x\in \partial\Omega}\beta(x)\gt 0\) and \(f : \Omega\times\mathbb{R}\rightarrow \mathbb{R}\), \(g : \partial\Omega\times\mathbb{R}\rightarrow \mathbb{R}\) are continuous functions. Under appropriate assumptions on \(f\) and \(g\), we obtain the existence and multiplicity of solutions using the variational method. The positive solution of the problem is also considered.http://www.opuscula.agh.edu.pl/vol34/3/art/opuscula_math_3438.pdfcritical pointsvariational method\(p(x)\)-Laplaciangeneralized Lebesgue-Sobolev spaces
collection DOAJ
language English
format Article
sources DOAJ
author Najib Tsouli
Omar Darhouche
spellingShingle Najib Tsouli
Omar Darhouche
Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator
Opuscula Mathematica
critical points
variational method
\(p(x)\)-Laplacian
generalized Lebesgue-Sobolev spaces
author_facet Najib Tsouli
Omar Darhouche
author_sort Najib Tsouli
title Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator
title_short Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator
title_full Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator
title_fullStr Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator
title_full_unstemmed Existence and multiplicity results for nonlinear problems involving the p(x)-Laplace operator
title_sort existence and multiplicity results for nonlinear problems involving the p(x)-laplace operator
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2014-01-01
description In this paper we study the following nonlinear boundary-value problem \[-\Delta_{p(x)} u=\lambda f(x,u) \quad \text{ in } \Omega,\] \[|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}+\beta(x)|u|^{p(x)-2}u=\mu g(x,u) \quad \text{ on } \partial\Omega,\] where \(\Omega\subset\mathbb{R}^N\) is a bounded domain with smooth boundary \(\partial\Omega\), \(\frac{\partial u}{\partial\nu}\) is the outer unit normal derivative on \(\partial\Omega\), \(\lambda, \mu\) are two real numbers such that \(\lambda^{2}+\mu^{2}\neq0\), \(p\) is a continuous function on \(\overline{\Omega}\) with \(\inf_{x\in \overline{\Omega}} p(x)\gt 1\), \(\beta\in L^{\infty}(\partial\Omega)\) with \(\beta^{-}:=\inf_{x\in \partial\Omega}\beta(x)\gt 0\) and \(f : \Omega\times\mathbb{R}\rightarrow \mathbb{R}\), \(g : \partial\Omega\times\mathbb{R}\rightarrow \mathbb{R}\) are continuous functions. Under appropriate assumptions on \(f\) and \(g\), we obtain the existence and multiplicity of solutions using the variational method. The positive solution of the problem is also considered.
topic critical points
variational method
\(p(x)\)-Laplacian
generalized Lebesgue-Sobolev spaces
url http://www.opuscula.agh.edu.pl/vol34/3/art/opuscula_math_3438.pdf
work_keys_str_mv AT najibtsouli existenceandmultiplicityresultsfornonlinearproblemsinvolvingthepxlaplaceoperator
AT omardarhouche existenceandmultiplicityresultsfornonlinearproblemsinvolvingthepxlaplaceoperator
_version_ 1725659243638423552