Imbalanced Fault Classification of Bearing via Wasserstein Generative Adversarial Networks with Gradient Penalty

Recently, generative adversarial networks (GANs) are widely applied to increase the amounts of imbalanced input samples in fault diagnosis. However, the existing GAN-based methods have convergence difficulties and training instability, which affect the fault diagnosis efficiency. This paper develops...

Full description

Bibliographic Details
Main Authors: Baokun Han, Sixiang Jia, Guifang Liu, Jinrui Wang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/8836477
Description
Summary:Recently, generative adversarial networks (GANs) are widely applied to increase the amounts of imbalanced input samples in fault diagnosis. However, the existing GAN-based methods have convergence difficulties and training instability, which affect the fault diagnosis efficiency. This paper develops a novel framework for imbalanced fault classification based on Wasserstein generative adversarial networks with gradient penalty (WGAN-GP), which interpolates randomly between the true and generated samples to ensure that the transition region between the true and false samples satisfies the Lipschitz constraint. The process of feature learning is visualized to show the feature extraction process of WGAN-GP. To verify the availability of the generated samples, a stacked autoencoder (SAE) is set to classify the enhanced dataset composed of the generated samples and original samples. Furthermore, the exhibition of the loss curve indicates that WGAN-GP has better convergence and faster training speed due to the introduction of the gradient penalty. Three bearing datasets are employed to verify the effectiveness of the developed framework, and the results show that the proposed framework has an excellent performance in mechanical fault diagnosis under the imbalanced training dataset.
ISSN:1070-9622
1875-9203