Co-regulatory expression quantitative trait loci mapping: method and application to endometrial cancer

<p>Abstract</p> <p>Background</p> <p>Expression quantitative trait loci (eQTL) studies have helped identify the genetic determinants of gene expression. Understanding the potential interacting mechanisms underlying such findings, however, is challenging.</p> <p...

Full description

Bibliographic Details
Main Authors: Witte John S, Kompass Kenneth S
Format: Article
Language:English
Published: BMC 2011-01-01
Series:BMC Medical Genomics
Online Access:http://www.biomedcentral.com/1755-8794/4/6
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Expression quantitative trait loci (eQTL) studies have helped identify the genetic determinants of gene expression. Understanding the potential interacting mechanisms underlying such findings, however, is challenging.</p> <p>Methods</p> <p>We describe a method to identify the <it>trans-</it>acting drivers of multiple gene co-expression, which reflects the action of regulatory molecules. This method-termed <it>co-regulatory expression quantitative trait locus </it>(creQTL) <it>mapping</it>-allows for evaluation of a more focused set of phenotypes within a clear biological context than conventional eQTL mapping.</p> <p>Results</p> <p>Applying this method to a study of endometrial cancer revealed regulatory mechanisms supported by the literature: a creQTL between a locus upstream of STARD13/DLC2 and a group of seven IFNβ-induced genes. This suggests that the Rho-GTPase encoded by STARD13 regulates IFNβ-induced genes and the DNA damage response.</p> <p>Conclusions</p> <p>Because of the importance of IFNβ in cancer, our results suggest that creQTL may provide a finer picture of gene regulation and may reveal additional molecular targets for intervention. An open source R implementation of the method is available at <url>http://sites.google.com/site/kenkompass/</url>.</p>
ISSN:1755-8794