An accurate approximation formula for gamma function

Abstract In this paper, we present a very accurate approximation for the gamma function: Γ(x+1)∼2πx(xe)x(xsinh1x)x/2exp(73241x3(35x2+33))=W2(x) $$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} (...

Full description

Bibliographic Details
Main Authors: Zhen-Hang Yang, Jing-Feng Tian
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1646-6
id doaj-d14a96602765433a96841be5548d1e07
record_format Article
spelling doaj-d14a96602765433a96841be5548d1e072020-11-24T23:08:24ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-03-01201811910.1186/s13660-018-1646-6An accurate approximation formula for gamma functionZhen-Hang Yang0Jing-Feng Tian1College of Science and Technology, North China Electric Power UniversityCollege of Science and Technology, North China Electric Power UniversityAbstract In this paper, we present a very accurate approximation for the gamma function: Γ(x+1)∼2πx(xe)x(xsinh1x)x/2exp(73241x3(35x2+33))=W2(x) $$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$ as x→∞ $x\rightarrow\infty$, and we prove that the function x↦lnΓ(x+1)−lnW2(x) $x\mapsto\ln \Gamma ( x+1 ) -\ln W_{2} ( x ) $ is strictly decreasing and convex from (1,∞) $( 1,\infty ) $ onto (0,β) $( 0,\beta ) $, where β=22,02522,032−ln2πsinh1≈0.00002407. $$ \beta=\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx0.00002407. $$http://link.springer.com/article/10.1186/s13660-018-1646-6Gamma functionMonotonicityConvexityApproximation
collection DOAJ
language English
format Article
sources DOAJ
author Zhen-Hang Yang
Jing-Feng Tian
spellingShingle Zhen-Hang Yang
Jing-Feng Tian
An accurate approximation formula for gamma function
Journal of Inequalities and Applications
Gamma function
Monotonicity
Convexity
Approximation
author_facet Zhen-Hang Yang
Jing-Feng Tian
author_sort Zhen-Hang Yang
title An accurate approximation formula for gamma function
title_short An accurate approximation formula for gamma function
title_full An accurate approximation formula for gamma function
title_fullStr An accurate approximation formula for gamma function
title_full_unstemmed An accurate approximation formula for gamma function
title_sort accurate approximation formula for gamma function
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2018-03-01
description Abstract In this paper, we present a very accurate approximation for the gamma function: Γ(x+1)∼2πx(xe)x(xsinh1x)x/2exp(73241x3(35x2+33))=W2(x) $$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$ as x→∞ $x\rightarrow\infty$, and we prove that the function x↦lnΓ(x+1)−lnW2(x) $x\mapsto\ln \Gamma ( x+1 ) -\ln W_{2} ( x ) $ is strictly decreasing and convex from (1,∞) $( 1,\infty ) $ onto (0,β) $( 0,\beta ) $, where β=22,02522,032−ln2πsinh1≈0.00002407. $$ \beta=\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx0.00002407. $$
topic Gamma function
Monotonicity
Convexity
Approximation
url http://link.springer.com/article/10.1186/s13660-018-1646-6
work_keys_str_mv AT zhenhangyang anaccurateapproximationformulaforgammafunction
AT jingfengtian anaccurateapproximationformulaforgammafunction
AT zhenhangyang accurateapproximationformulaforgammafunction
AT jingfengtian accurateapproximationformulaforgammafunction
_version_ 1725614448222142464