An accurate approximation formula for gamma function
Abstract In this paper, we present a very accurate approximation for the gamma function: Γ(x+1)∼2πx(xe)x(xsinh1x)x/2exp(73241x3(35x2+33))=W2(x) $$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} (...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-03-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1646-6 |
id |
doaj-d14a96602765433a96841be5548d1e07 |
---|---|
record_format |
Article |
spelling |
doaj-d14a96602765433a96841be5548d1e072020-11-24T23:08:24ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-03-01201811910.1186/s13660-018-1646-6An accurate approximation formula for gamma functionZhen-Hang Yang0Jing-Feng Tian1College of Science and Technology, North China Electric Power UniversityCollege of Science and Technology, North China Electric Power UniversityAbstract In this paper, we present a very accurate approximation for the gamma function: Γ(x+1)∼2πx(xe)x(xsinh1x)x/2exp(73241x3(35x2+33))=W2(x) $$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$ as x→∞ $x\rightarrow\infty$, and we prove that the function x↦lnΓ(x+1)−lnW2(x) $x\mapsto\ln \Gamma ( x+1 ) -\ln W_{2} ( x ) $ is strictly decreasing and convex from (1,∞) $( 1,\infty ) $ onto (0,β) $( 0,\beta ) $, where β=22,02522,032−ln2πsinh1≈0.00002407. $$ \beta=\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx0.00002407. $$http://link.springer.com/article/10.1186/s13660-018-1646-6Gamma functionMonotonicityConvexityApproximation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhen-Hang Yang Jing-Feng Tian |
spellingShingle |
Zhen-Hang Yang Jing-Feng Tian An accurate approximation formula for gamma function Journal of Inequalities and Applications Gamma function Monotonicity Convexity Approximation |
author_facet |
Zhen-Hang Yang Jing-Feng Tian |
author_sort |
Zhen-Hang Yang |
title |
An accurate approximation formula for gamma function |
title_short |
An accurate approximation formula for gamma function |
title_full |
An accurate approximation formula for gamma function |
title_fullStr |
An accurate approximation formula for gamma function |
title_full_unstemmed |
An accurate approximation formula for gamma function |
title_sort |
accurate approximation formula for gamma function |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2018-03-01 |
description |
Abstract In this paper, we present a very accurate approximation for the gamma function: Γ(x+1)∼2πx(xe)x(xsinh1x)x/2exp(73241x3(35x2+33))=W2(x) $$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$ as x→∞ $x\rightarrow\infty$, and we prove that the function x↦lnΓ(x+1)−lnW2(x) $x\mapsto\ln \Gamma ( x+1 ) -\ln W_{2} ( x ) $ is strictly decreasing and convex from (1,∞) $( 1,\infty ) $ onto (0,β) $( 0,\beta ) $, where β=22,02522,032−ln2πsinh1≈0.00002407. $$ \beta=\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx0.00002407. $$ |
topic |
Gamma function Monotonicity Convexity Approximation |
url |
http://link.springer.com/article/10.1186/s13660-018-1646-6 |
work_keys_str_mv |
AT zhenhangyang anaccurateapproximationformulaforgammafunction AT jingfengtian anaccurateapproximationformulaforgammafunction AT zhenhangyang accurateapproximationformulaforgammafunction AT jingfengtian accurateapproximationformulaforgammafunction |
_version_ |
1725614448222142464 |