Normal Bases on Galois Ring Extensions
Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension <inline-formula> <math display="inlin...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/10/12/702 |
id |
doaj-d14713154b884cf6a0e626fcb16f2196 |
---|---|
record_format |
Article |
spelling |
doaj-d14713154b884cf6a0e626fcb16f21962020-11-25T00:05:31ZengMDPI AGSymmetry2073-89942018-12-01101270210.3390/sym10120702sym10120702Normal Bases on Galois Ring ExtensionsAixian Zhang0Keqin Feng1Department of Mathematical Sciences, Xi’an University of Technology, Xi’an 710048, ChinaDepartment of Mathematical Sciences, Tsinghua University, Beijing 100084, ChinaNormal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>=</mo> <mi>GR</mi> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mi>r</mi> </msup> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> We present a criterion on the normal basis for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula> and reduce this problem to one of finite field extension <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi mathvariant="bold">R</mi> <mo>¯</mo> </mover> <mo>/</mo> <msub> <mover> <mi mathvariant="normal">Z</mi> <mo>¯</mo> </mover> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>q</mi> </msub> <mo>/</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>p</mi> </msub> <mspace width="4pt"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>=</mo> <msup> <mi>p</mi> <mi>n</mi> </msup> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> by Theorem 1. We determine all optimal normal bases for Galois ring extension.https://www.mdpi.com/2073-8994/10/12/702Galois ringoptimal normal basismultiplicative complexityfinite field |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aixian Zhang Keqin Feng |
spellingShingle |
Aixian Zhang Keqin Feng Normal Bases on Galois Ring Extensions Symmetry Galois ring optimal normal basis multiplicative complexity finite field |
author_facet |
Aixian Zhang Keqin Feng |
author_sort |
Aixian Zhang |
title |
Normal Bases on Galois Ring Extensions |
title_short |
Normal Bases on Galois Ring Extensions |
title_full |
Normal Bases on Galois Ring Extensions |
title_fullStr |
Normal Bases on Galois Ring Extensions |
title_full_unstemmed |
Normal Bases on Galois Ring Extensions |
title_sort |
normal bases on galois ring extensions |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2018-12-01 |
description |
Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>=</mo> <mi>GR</mi> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mi>r</mi> </msup> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> We present a criterion on the normal basis for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula> and reduce this problem to one of finite field extension <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi mathvariant="bold">R</mi> <mo>¯</mo> </mover> <mo>/</mo> <msub> <mover> <mi mathvariant="normal">Z</mi> <mo>¯</mo> </mover> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>q</mi> </msub> <mo>/</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>p</mi> </msub> <mspace width="4pt"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>=</mo> <msup> <mi>p</mi> <mi>n</mi> </msup> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> by Theorem 1. We determine all optimal normal bases for Galois ring extension. |
topic |
Galois ring optimal normal basis multiplicative complexity finite field |
url |
https://www.mdpi.com/2073-8994/10/12/702 |
work_keys_str_mv |
AT aixianzhang normalbasesongaloisringextensions AT keqinfeng normalbasesongaloisringextensions |
_version_ |
1725424978276384768 |