Normal Bases on Galois Ring Extensions

Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension <inline-formula> <math display="inlin...

Full description

Bibliographic Details
Main Authors: Aixian Zhang, Keqin Feng
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/10/12/702
id doaj-d14713154b884cf6a0e626fcb16f2196
record_format Article
spelling doaj-d14713154b884cf6a0e626fcb16f21962020-11-25T00:05:31ZengMDPI AGSymmetry2073-89942018-12-01101270210.3390/sym10120702sym10120702Normal Bases on Galois Ring ExtensionsAixian Zhang0Keqin Feng1Department of Mathematical Sciences, Xi’an University of Technology, Xi’an 710048, ChinaDepartment of Mathematical Sciences, Tsinghua University, Beijing 100084, ChinaNormal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>=</mo> <mi>GR</mi> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mi>r</mi> </msup> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> We present a criterion on the normal basis for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula> and reduce this problem to one of finite field extension <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi mathvariant="bold">R</mi> <mo>&#175;</mo> </mover> <mo>/</mo> <msub> <mover> <mi mathvariant="normal">Z</mi> <mo>&#175;</mo> </mover> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>q</mi> </msub> <mo>/</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>p</mi> </msub> <mspace width="4pt"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>=</mo> <msup> <mi>p</mi> <mi>n</mi> </msup> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> by Theorem 1. We determine all optimal normal bases for Galois ring extension.https://www.mdpi.com/2073-8994/10/12/702Galois ringoptimal normal basismultiplicative complexityfinite field
collection DOAJ
language English
format Article
sources DOAJ
author Aixian Zhang
Keqin Feng
spellingShingle Aixian Zhang
Keqin Feng
Normal Bases on Galois Ring Extensions
Symmetry
Galois ring
optimal normal basis
multiplicative complexity
finite field
author_facet Aixian Zhang
Keqin Feng
author_sort Aixian Zhang
title Normal Bases on Galois Ring Extensions
title_short Normal Bases on Galois Ring Extensions
title_full Normal Bases on Galois Ring Extensions
title_fullStr Normal Bases on Galois Ring Extensions
title_full_unstemmed Normal Bases on Galois Ring Extensions
title_sort normal bases on galois ring extensions
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2018-12-01
description Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>=</mo> <mi>GR</mi> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mi>r</mi> </msup> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> We present a criterion on the normal basis for <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">R</mi> <mo>/</mo> <msub> <mi mathvariant="normal">Z</mi> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> </mrow> </semantics> </math> </inline-formula> and reduce this problem to one of finite field extension <inline-formula> <math display="inline"> <semantics> <mrow> <mover> <mi mathvariant="bold">R</mi> <mo>&#175;</mo> </mover> <mo>/</mo> <msub> <mover> <mi mathvariant="normal">Z</mi> <mo>&#175;</mo> </mover> <msup> <mi>p</mi> <mi>r</mi> </msup> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>q</mi> </msub> <mo>/</mo> <msub> <mi mathvariant="double-struck">F</mi> <mi>p</mi> </msub> <mspace width="4pt"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>=</mo> <msup> <mi>p</mi> <mi>n</mi> </msup> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> by Theorem 1. We determine all optimal normal bases for Galois ring extension.
topic Galois ring
optimal normal basis
multiplicative complexity
finite field
url https://www.mdpi.com/2073-8994/10/12/702
work_keys_str_mv AT aixianzhang normalbasesongaloisringextensions
AT keqinfeng normalbasesongaloisringextensions
_version_ 1725424978276384768