Snow gliding and glide-snow avalanches: recent outcomes from two experimental test sites in Aosta Valley (northwestern Italian Alps)
<p>Snow gliding and glide-snow avalanches are gaining importance among scientists as global warming might induce conditions favourable to those phenomena. Our aim is to analyse such processes with a particular focus on the potential driving factors associated with the soil conditions. We equip...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-11-01
|
Series: | Natural Hazards and Earth System Sciences |
Online Access: | https://www.nat-hazards-earth-syst-sci.net/19/2667/2019/nhess-19-2667-2019.pdf |
Summary: | <p>Snow gliding and glide-snow avalanches are gaining
importance among scientists as global warming might induce conditions
favourable to those phenomena. Our aim is to analyse such processes with a
particular focus on the potential driving factors associated with the soil
conditions. We equipped two experimental test sites in the Aosta Valley region
(NW Italy) with glide-snow shoes, temperature and volumetric liquid water
content (VLWC) sensors in the soil and in the basal snowpack layer; snow and
weather parameters were also collected by automatic weather stations and at
manual snow measuring sites.</p>
<p>In the two monitoring seasons 2013–2014 and 2014–2015 we registered nine glide-snow
avalanches, two cold and seven warm events, which were characterized
by different snow and soil conditions. In the only warm glide-snow avalanche
event, which presented a continuous gliding before, the daily glide rate
showed a significant exponential relationship with the soil VLWC. We also
found, though without a general trend, that gliding and non-gliding periods
(either considering warm and cold periods separately or together) were
characterized by significantly different predisposing factors.</p>
<p>This study contributes to the assessment of the importance of soil VLWC, which seems to
be one of the most important driving factors for gliding processes.
Therefore, it supports the need, already suggested by other scientists, for
analysing such processes with an interdisciplinary approach which integrates
snow and soil sciences.</p> |
---|---|
ISSN: | 1561-8633 1684-9981 |