Overexpression of Long Non-Coding RNA NNT-AS1 Correlates with Tumor Progression and Poor Prognosis in Osteosarcoma

Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play critical regulatory roles in cancers, including osteosarcoma. A previous study showed that Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) was aberrantly expressed in several types of cancer....

Full description

Bibliographic Details
Main Authors: Hui Ye, Jinkuang Lin, Xuedong Yao, Yizhong Li, Xiaobin Lin, Hai Lu
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2018-03-01
Series:Cellular Physiology and Biochemistry
Subjects:
Online Access:https://www.karger.com/Article/FullText/487966
Description
Summary:Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play critical regulatory roles in cancers, including osteosarcoma. A previous study showed that Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 (NNT-AS1) was aberrantly expressed in several types of cancer. However, the potential biological roles and regulatory mechanisms of NNT-AS1 in osteosarcoma progression remain unknown. Methods: Quantitative RT-PCR was performed to examine the expression of NNT-AS1 in human tissues and cells. The biological functions of NNT-AS1 were determined by CCK-8, colony formation, Flow cytometry and Transwell assays in vitro. A mouse xenograft model was performed to investigate the effect of NNT-AS1 on tumor growth in vivo. Results: In this study, we found the expression of NNT-AS1 was significantly increased in tumor tissues compared to adjacent normal tissues. Furthermore, upregulated NNT-AS1 expression predicted poor prognosis and was an independent and significant risk factor for osteosarcoma patient survival. Further experiments revealed that NNT-AS1 knockdown significantly inhibited cell proliferation by inducing cell cycle arrest and promoting apoptosis in osteosarcoma cells. Moreover, NNT-AS1 silencing suppressed cell migration and invasion in vitro. In a tumor xenograft model, knockdown of NNT-AS1 suppressed tumor growth of OS-732 cells in vivo. Conclusions: Taken together, these findings indicate that NNT-AS1 functions as an oncogene in osteosarcoma and could be a novel diagnostic and therapeutic target for osteosarcoma.
ISSN:1015-8987
1421-9778