Percolation and Transport Properties in The Mechanically Deformed Composites Filled with Carbon Nanotubes

The conductivity and percolation concentration of the composite material filled with randomly distributed carbon nanotubes were simulated as a function of the mechanical deformation. Nanotubes were modelled as the hard-core ellipsoids of revolution with high aspect ratio. The evident anisotropy was...

Full description

Bibliographic Details
Main Authors: Artyom Plyushch, Dmitry Lyakhov, Mantas Šimėnas, Dzmitry Bychanok, Jan Macutkevič, Dominik Michels, Jūras Banys, Patrizia Lamberti, Polina Kuzhir
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/4/1315
Description
Summary:The conductivity and percolation concentration of the composite material filled with randomly distributed carbon nanotubes were simulated as a function of the mechanical deformation. Nanotubes were modelled as the hard-core ellipsoids of revolution with high aspect ratio. The evident anisotropy was observed in the percolation threshold and conductivity. The minimal mean values of the percolation of 4.6 vol. % and maximal conductivity of 0.74 S/m were found for the isotropic composite. Being slightly aligned, the composite demonstrates lower percolation concentration and conductivity along the orientation of the nanotubes compared to the perpendicular arrangement.
ISSN:2076-3417