A Blind Source Separation Algorithm Based on Dynamic Niching Particle Swarm Optimization

In this paper, the dynamic niching particle swarm optimization (DNPSO) is proposed to solve linear blind source separation problem. The key point is to use the DNPSO rather than particle swarm optimization (PSO) and fast-ICA as the optimization algorithm in Independent Component Analysis (ICA). By u...

Full description

Bibliographic Details
Main Authors: Li Hongjie, Li Zhen, Li Hongyi
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20166103008
Description
Summary:In this paper, the dynamic niching particle swarm optimization (DNPSO) is proposed to solve linear blind source separation problem. The key point is to use the DNPSO rather than particle swarm optimization (PSO) and fast-ICA as the optimization algorithm in Independent Component Analysis (ICA). By using DNPSO, which has global superiority, the performance of ICA will be improved in accuracy and convergence rate. The idea of sub-population in DNPSO leads to the greater efficiency compared with other methods when solving high dimensional cost functions in ICA. The performance of ICA based on DNPSO is investigated by numerical experiments.
ISSN:2261-236X