Fractional <i>SIS</i> Epidemic Models

In this paper, we consider the fractional <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> (susceptible-infectious-susceptibl...

Full description

Bibliographic Details
Main Authors: Caterina Balzotti, Mirko D’Ovidio, Paola Loreti
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/4/3/44
id doaj-d1199e2c41ab472b9c449350de8edea8
record_format Article
spelling doaj-d1199e2c41ab472b9c449350de8edea82021-04-02T13:11:35ZengMDPI AGFractal and Fractional2504-31102020-08-014444410.3390/fractalfract4030044Fractional <i>SIS</i> Epidemic ModelsCaterina Balzotti0Mirko D’Ovidio1Paola Loreti2Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, ItalyDepartment of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, ItalyDepartment of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, ItalyIn this paper, we consider the fractional <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> (susceptible-infectious-susceptible) epidemic model (<inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) in the case of constant population size. We provide a representation of the explicit solution to the fractional model and we illustrate the results by numerical schemes. A comparison with the limit case when the fractional order <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> converges to 1 (the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) is also given. We analyze the effects of the fractional derivatives by comparing the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> and the <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> models.https://www.mdpi.com/2504-3110/4/3/44α-SIS modelSIS modelepidemic modelsfractional logistic equation
collection DOAJ
language English
format Article
sources DOAJ
author Caterina Balzotti
Mirko D’Ovidio
Paola Loreti
spellingShingle Caterina Balzotti
Mirko D’Ovidio
Paola Loreti
Fractional <i>SIS</i> Epidemic Models
Fractal and Fractional
α-SIS model
SIS model
epidemic models
fractional logistic equation
author_facet Caterina Balzotti
Mirko D’Ovidio
Paola Loreti
author_sort Caterina Balzotti
title Fractional <i>SIS</i> Epidemic Models
title_short Fractional <i>SIS</i> Epidemic Models
title_full Fractional <i>SIS</i> Epidemic Models
title_fullStr Fractional <i>SIS</i> Epidemic Models
title_full_unstemmed Fractional <i>SIS</i> Epidemic Models
title_sort fractional <i>sis</i> epidemic models
publisher MDPI AG
series Fractal and Fractional
issn 2504-3110
publishDate 2020-08-01
description In this paper, we consider the fractional <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> (susceptible-infectious-susceptible) epidemic model (<inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) in the case of constant population size. We provide a representation of the explicit solution to the fractional model and we illustrate the results by numerical schemes. A comparison with the limit case when the fractional order <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> converges to 1 (the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) is also given. We analyze the effects of the fractional derivatives by comparing the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> and the <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> models.
topic α-SIS model
SIS model
epidemic models
fractional logistic equation
url https://www.mdpi.com/2504-3110/4/3/44
work_keys_str_mv AT caterinabalzotti fractionalisisiepidemicmodels
AT mirkodovidio fractionalisisiepidemicmodels
AT paolaloreti fractionalisisiepidemicmodels
_version_ 1721565971754254336