Fractional <i>SIS</i> Epidemic Models
In this paper, we consider the fractional <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> (susceptible-infectious-susceptibl...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/4/3/44 |
id |
doaj-d1199e2c41ab472b9c449350de8edea8 |
---|---|
record_format |
Article |
spelling |
doaj-d1199e2c41ab472b9c449350de8edea82021-04-02T13:11:35ZengMDPI AGFractal and Fractional2504-31102020-08-014444410.3390/fractalfract4030044Fractional <i>SIS</i> Epidemic ModelsCaterina Balzotti0Mirko D’Ovidio1Paola Loreti2Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, ItalyDepartment of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, ItalyDepartment of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, ItalyIn this paper, we consider the fractional <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> (susceptible-infectious-susceptible) epidemic model (<inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) in the case of constant population size. We provide a representation of the explicit solution to the fractional model and we illustrate the results by numerical schemes. A comparison with the limit case when the fractional order <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> converges to 1 (the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) is also given. We analyze the effects of the fractional derivatives by comparing the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> and the <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> models.https://www.mdpi.com/2504-3110/4/3/44α-SIS modelSIS modelepidemic modelsfractional logistic equation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Caterina Balzotti Mirko D’Ovidio Paola Loreti |
spellingShingle |
Caterina Balzotti Mirko D’Ovidio Paola Loreti Fractional <i>SIS</i> Epidemic Models Fractal and Fractional α-SIS model SIS model epidemic models fractional logistic equation |
author_facet |
Caterina Balzotti Mirko D’Ovidio Paola Loreti |
author_sort |
Caterina Balzotti |
title |
Fractional <i>SIS</i> Epidemic Models |
title_short |
Fractional <i>SIS</i> Epidemic Models |
title_full |
Fractional <i>SIS</i> Epidemic Models |
title_fullStr |
Fractional <i>SIS</i> Epidemic Models |
title_full_unstemmed |
Fractional <i>SIS</i> Epidemic Models |
title_sort |
fractional <i>sis</i> epidemic models |
publisher |
MDPI AG |
series |
Fractal and Fractional |
issn |
2504-3110 |
publishDate |
2020-08-01 |
description |
In this paper, we consider the fractional <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> (susceptible-infectious-susceptible) epidemic model (<inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) in the case of constant population size. We provide a representation of the explicit solution to the fractional model and we illustrate the results by numerical schemes. A comparison with the limit case when the fractional order <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> converges to 1 (the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> model) is also given. We analyze the effects of the fractional derivatives by comparing the <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> and the <inline-formula><math display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-<inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></semantics></math></inline-formula> models. |
topic |
α-SIS model SIS model epidemic models fractional logistic equation |
url |
https://www.mdpi.com/2504-3110/4/3/44 |
work_keys_str_mv |
AT caterinabalzotti fractionalisisiepidemicmodels AT mirkodovidio fractionalisisiepidemicmodels AT paolaloreti fractionalisisiepidemicmodels |
_version_ |
1721565971754254336 |