Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy

Ruifeng Zhang, Xuhong Dang, Zhongxin Zhang, Yayi Yuan, Yue Ren, Zhikai Duan, Yahui Zuo China Institute for Radiation Protection, Taiyuan, Shanxi 030006, China Objective: Heavy ions have contributed to tumor site-specific radiotherapy and are a major health risk for astronauts. The purpose of this st...

Full description

Bibliographic Details
Main Authors: Zhang RF, Dang XH, Zhang ZX, Yuan YY, Ren Y, Duan ZK, Zuo YH
Format: Article
Language:English
Published: Dove Medical Press 2019-03-01
Series:Cancer Management and Research
Subjects:
Online Access:https://www.dovepress.com/comparison-of-transcriptional-profiles-in-human-lymphocyte-cells-irrad-peer-reviewed-article-CMAR
id doaj-d114a0fa17f1491997ae0669259d54a8
record_format Article
spelling doaj-d114a0fa17f1491997ae0669259d54a82020-11-25T02:10:26ZengDove Medical PressCancer Management and Research1179-13222019-03-01Volume 112363236944725Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 GyZhang RFDang XHZhang ZXYuan YYRen YDuan ZKZuo YHRuifeng Zhang, Xuhong Dang, Zhongxin Zhang, Yayi Yuan, Yue Ren, Zhikai Duan, Yahui Zuo China Institute for Radiation Protection, Taiyuan, Shanxi 030006, China Objective: Heavy ions have contributed to tumor site-specific radiotherapy and are a major health risk for astronauts. The purpose of this study was to investigate the changes in gene expression in peripheral lymphocytes of cancer patients and astronauts exposed to 12C ions, and identify suitable molecular biomarkers for health monitoring. We also aimed to observe the effects of treatment and the level of damage, by comparing the transcriptional profiles of human lymphocyte cell lines exposed to 12C ion beams at doses of 0–2.0 Gy.Materials and methods: A human lymphocyte cell line was irradiated with 12C ion beams at 0, 0.1, 0.5, and 2.0 Gy and transcriptional profiles were evaluated using the Agilent human gene expression microarray at 24 hours after irradiation. Differentially expressed genes were identified using a fold change of ≥2.0. Representative genes were further validated by RT-PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to determine the roles of differentially expressed mRNAs. Results: Based on the microarray assays, 1,113 genes were upregulated and 853 genes were downregulated in human lymphocyte cells irradiated with 0.1 Gy 12C ion beams compared with the control group, 1,095 genes were upregulated and 1,220 genes were downregulated in cells irradiated with 0.5 Gy 12C ion beams, and 1,055 genes were upregulated and 1,356 genes were downregulated in cells irradiated with 2.0 Gy. A total of 504 genes were differentially expressed in all irradiated groups, of which 88 genes were upregulated and 416 genes downregulated. Most of these altered genes were related to the cell cycle, apoptosis, signal transduction, DNA transcription, repair, and replication. The expression differences were further confirmed by RT-PCR for a subset of differentially expressed genes. Conclusion: Differentially expressed genes between treatment and control groups at 24 hours post-irradiation increased as the radiation dose increased; upregulated genes gradually decreased and downregulated genes increased. Our data indicated that 12C ion beams could repress a number of genes in a dose-dependent manner, which might lead to the failure of multiple cellular biological functions. Keywords: 12C ion beams, human lymphocyte cell line, microarray assay, gene expressionhttps://www.dovepress.com/comparison-of-transcriptional-profiles-in-human-lymphocyte-cells-irrad-peer-reviewed-article-CMAR12C ion beamsHuman lymphocyte cell lineMicroarray assayGene expression
collection DOAJ
language English
format Article
sources DOAJ
author Zhang RF
Dang XH
Zhang ZX
Yuan YY
Ren Y
Duan ZK
Zuo YH
spellingShingle Zhang RF
Dang XH
Zhang ZX
Yuan YY
Ren Y
Duan ZK
Zuo YH
Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy
Cancer Management and Research
12C ion beams
Human lymphocyte cell line
Microarray assay
Gene expression
author_facet Zhang RF
Dang XH
Zhang ZX
Yuan YY
Ren Y
Duan ZK
Zuo YH
author_sort Zhang RF
title Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy
title_short Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy
title_full Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy
title_fullStr Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy
title_full_unstemmed Comparison of transcriptional profiles in human lymphocyte cells irradiated with 12C ion beams at 0–2.0 Gy
title_sort comparison of transcriptional profiles in human lymphocyte cells irradiated with 12c ion beams at 0–2.0 gy
publisher Dove Medical Press
series Cancer Management and Research
issn 1179-1322
publishDate 2019-03-01
description Ruifeng Zhang, Xuhong Dang, Zhongxin Zhang, Yayi Yuan, Yue Ren, Zhikai Duan, Yahui Zuo China Institute for Radiation Protection, Taiyuan, Shanxi 030006, China Objective: Heavy ions have contributed to tumor site-specific radiotherapy and are a major health risk for astronauts. The purpose of this study was to investigate the changes in gene expression in peripheral lymphocytes of cancer patients and astronauts exposed to 12C ions, and identify suitable molecular biomarkers for health monitoring. We also aimed to observe the effects of treatment and the level of damage, by comparing the transcriptional profiles of human lymphocyte cell lines exposed to 12C ion beams at doses of 0–2.0 Gy.Materials and methods: A human lymphocyte cell line was irradiated with 12C ion beams at 0, 0.1, 0.5, and 2.0 Gy and transcriptional profiles were evaluated using the Agilent human gene expression microarray at 24 hours after irradiation. Differentially expressed genes were identified using a fold change of ≥2.0. Representative genes were further validated by RT-PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to determine the roles of differentially expressed mRNAs. Results: Based on the microarray assays, 1,113 genes were upregulated and 853 genes were downregulated in human lymphocyte cells irradiated with 0.1 Gy 12C ion beams compared with the control group, 1,095 genes were upregulated and 1,220 genes were downregulated in cells irradiated with 0.5 Gy 12C ion beams, and 1,055 genes were upregulated and 1,356 genes were downregulated in cells irradiated with 2.0 Gy. A total of 504 genes were differentially expressed in all irradiated groups, of which 88 genes were upregulated and 416 genes downregulated. Most of these altered genes were related to the cell cycle, apoptosis, signal transduction, DNA transcription, repair, and replication. The expression differences were further confirmed by RT-PCR for a subset of differentially expressed genes. Conclusion: Differentially expressed genes between treatment and control groups at 24 hours post-irradiation increased as the radiation dose increased; upregulated genes gradually decreased and downregulated genes increased. Our data indicated that 12C ion beams could repress a number of genes in a dose-dependent manner, which might lead to the failure of multiple cellular biological functions. Keywords: 12C ion beams, human lymphocyte cell line, microarray assay, gene expression
topic 12C ion beams
Human lymphocyte cell line
Microarray assay
Gene expression
url https://www.dovepress.com/comparison-of-transcriptional-profiles-in-human-lymphocyte-cells-irrad-peer-reviewed-article-CMAR
work_keys_str_mv AT zhangrf comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
AT dangxh comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
AT zhangzx comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
AT yuanyy comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
AT reny comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
AT duanzk comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
AT zuoyh comparisonoftranscriptionalprofilesinhumanlymphocytecellsirradiatedwith12cionbeamsat0ndash20gy
_version_ 1724919815233077248