Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy
Abstract Background Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information....
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2018-07-01
|
Series: | Radiation Oncology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13014-018-1068-0 |
id |
doaj-d11008cdc9bc4fba990afb25adc925ec |
---|---|
record_format |
Article |
spelling |
doaj-d11008cdc9bc4fba990afb25adc925ec2020-11-24T20:57:18ZengBMCRadiation Oncology1748-717X2018-07-0113111010.1186/s13014-018-1068-0Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapyJiawei Chen0Haibin Chen1Zichun Zhong2Zhuoyu Wang3Brian Hrycushko4Linghong Zhou5Steve Jiang6Kevin Albuquerque7Xuejun Gu8Xin Zhen9School of Biomedical Engineering, Southern Medical UniversitySchool of Biomedical Engineering, Southern Medical UniversityDepartment of Computer Science, Wayne State UniversityDepartment of Epidemiology, Biostatistics and Occupational Health, McGill UniversityDepartment of Radiation Oncology, The University of Texas, Southwestern Medical CenterSchool of Biomedical Engineering, Southern Medical UniversityDepartment of Radiation Oncology, The University of Texas, Southwestern Medical CenterDepartment of Radiation Oncology, The University of Texas, Southwestern Medical CenterDepartment of Radiation Oncology, The University of Texas, Southwestern Medical CenterSchool of Biomedical Engineering, Southern Medical UniversityAbstract Background Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity prediction. Methods Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively studied, including 12 with Grade ≥ 2 rectum toxicity and 30 patients with Grade 0–1 toxicity (non-toxicity patients). The cumulative equivalent 2-Gy rectal surface dose was deformably summed using the deformation vector fields obtained through a recent developed local topology preserved non-rigid point matching algorithm. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectum surface dose map (RSDM). The dose volume parameters (DVPs) were calculated from the 3D rectum surface, while the texture features and the dose geometric parameters (DGPs) were extracted from the 2D RSDM. Representative features further computed from DVPs, textures and DGPs by principle component analysis (PCA) and statistical analysis were respectively fed into a support vector machine equipped with a sequential feature selection procedure. The predictive powers of the representative features were compared with the GEC-ESTRO dosimetric parameters D0.1/1/2cm 3. Results Satisfactory predictive accuracy of sensitivity 74.75 and 84.75%, specificity 72.67 and 79.87%, and area under the receiver operating characteristic curve (AUC) 0.82 and 0.91 were respectively achieved by the PCA features and statistical significant features, which were superior to the D0.1/1/2cm 3 (AUC 0.71). The relative area in dose levels of 64Gy, 67Gy, 68Gy, 87Gy, 88Gy and 89Gy, perimeters in dose levels of 89Gy, as well as two texture features were ranked as the important factors that were closely correlated with rectal toxicity. Conclusions Our extensive experimental results have demonstrated the feasibility of the proposed scheme. A future large patient cohort study is still needed for model validation.http://link.springer.com/article/10.1186/s13014-018-1068-0Rectum toxicity predictionMachine learningDose accumulationDeformable registrationCervical cancer |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiawei Chen Haibin Chen Zichun Zhong Zhuoyu Wang Brian Hrycushko Linghong Zhou Steve Jiang Kevin Albuquerque Xuejun Gu Xin Zhen |
spellingShingle |
Jiawei Chen Haibin Chen Zichun Zhong Zhuoyu Wang Brian Hrycushko Linghong Zhou Steve Jiang Kevin Albuquerque Xuejun Gu Xin Zhen Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy Radiation Oncology Rectum toxicity prediction Machine learning Dose accumulation Deformable registration Cervical cancer |
author_facet |
Jiawei Chen Haibin Chen Zichun Zhong Zhuoyu Wang Brian Hrycushko Linghong Zhou Steve Jiang Kevin Albuquerque Xuejun Gu Xin Zhen |
author_sort |
Jiawei Chen |
title |
Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy |
title_short |
Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy |
title_full |
Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy |
title_fullStr |
Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy |
title_full_unstemmed |
Investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy |
title_sort |
investigating rectal toxicity associated dosimetric features with deformable accumulated rectal surface dose maps for cervical cancer radiotherapy |
publisher |
BMC |
series |
Radiation Oncology |
issn |
1748-717X |
publishDate |
2018-07-01 |
description |
Abstract Background Better knowledge of the dose-toxicity relationship is essential for safe dose escalation to improve local control in cervical cancer radiotherapy. The conventional dose-toxicity model is based on the dose volume histogram, which is the parameter lacking spatial dose information. To overcome this limit, we explore a comprehensive rectal dose-toxicity model based on both dose volume histogram and dose map features for accurate radiation toxicity prediction. Methods Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively studied, including 12 with Grade ≥ 2 rectum toxicity and 30 patients with Grade 0–1 toxicity (non-toxicity patients). The cumulative equivalent 2-Gy rectal surface dose was deformably summed using the deformation vector fields obtained through a recent developed local topology preserved non-rigid point matching algorithm. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectum surface dose map (RSDM). The dose volume parameters (DVPs) were calculated from the 3D rectum surface, while the texture features and the dose geometric parameters (DGPs) were extracted from the 2D RSDM. Representative features further computed from DVPs, textures and DGPs by principle component analysis (PCA) and statistical analysis were respectively fed into a support vector machine equipped with a sequential feature selection procedure. The predictive powers of the representative features were compared with the GEC-ESTRO dosimetric parameters D0.1/1/2cm 3. Results Satisfactory predictive accuracy of sensitivity 74.75 and 84.75%, specificity 72.67 and 79.87%, and area under the receiver operating characteristic curve (AUC) 0.82 and 0.91 were respectively achieved by the PCA features and statistical significant features, which were superior to the D0.1/1/2cm 3 (AUC 0.71). The relative area in dose levels of 64Gy, 67Gy, 68Gy, 87Gy, 88Gy and 89Gy, perimeters in dose levels of 89Gy, as well as two texture features were ranked as the important factors that were closely correlated with rectal toxicity. Conclusions Our extensive experimental results have demonstrated the feasibility of the proposed scheme. A future large patient cohort study is still needed for model validation. |
topic |
Rectum toxicity prediction Machine learning Dose accumulation Deformable registration Cervical cancer |
url |
http://link.springer.com/article/10.1186/s13014-018-1068-0 |
work_keys_str_mv |
AT jiaweichen investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT haibinchen investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT zichunzhong investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT zhuoyuwang investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT brianhrycushko investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT linghongzhou investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT stevejiang investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT kevinalbuquerque investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT xuejungu investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy AT xinzhen investigatingrectaltoxicityassociateddosimetricfeatureswithdeformableaccumulatedrectalsurfacedosemapsforcervicalcancerradiotherapy |
_version_ |
1716788139415044096 |