Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
<p class="Abstract"><span lang="EN-US">Face detection is the main building block on which all automatic systems dealing with human faces is built. For example, a face recognition system must rely on face detection</span><!--[if supportFields]><span lan...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
ITB Journal Publisher
2013-09-01
|
Series: | Journal of ICT Research and Applications |
Online Access: | http://journals.itb.ac.id/index.php/jictra/article/view/213 |
id |
doaj-d10ea5f253674353af1217e847542037 |
---|---|
record_format |
Article |
spelling |
doaj-d10ea5f253674353af1217e8475420372020-11-25T00:33:32ZengITB Journal PublisherJournal of ICT Research and Applications2337-57872338-54992013-09-0153157172214Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram CorrelationIwan Setyawan0Ivanna K. Timotius1Andreas A. Febrianto2Department of Electronic & Computer Engineering, Satya Wacana Christian University, Jl. Diponegoro 52 – 60, Salatiga, IndonesiaDepartment of Electronic & Computer Engineering, Satya Wacana Christian University, Jl. Diponegoro 52 – 60, Salatiga, IndonesiaDepartment of Electronic & Computer Engineering, Satya Wacana Christian University, Jl. Diponegoro 52 – 60, Salatiga, Indonesia<p class="Abstract"><span lang="EN-US">Face detection is the main building block on which all automatic systems dealing with human faces is built. For example, a face recognition system must rely on face detection</span><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-begin'></span> XE "face detection" </span><![endif]--><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> to process an input image and determine which areas contain human faces. These areas then become the input for the face recognition system for further processing. This paper presents a face detection system designed to detect frontal faces. The system uses Haar wavelet coefficients and local histogram correlation</span><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-begin'></span> XE "local histogram correlation" </span><![endif]--><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> as differentiating features. Our proposed system is trained using 100 training images. Our experiments show that the proposed system performed well during testing, achieving a detection rate of 91.5%.</span></p>http://journals.itb.ac.id/index.php/jictra/article/view/213 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Iwan Setyawan Ivanna K. Timotius Andreas A. Febrianto |
spellingShingle |
Iwan Setyawan Ivanna K. Timotius Andreas A. Febrianto Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation Journal of ICT Research and Applications |
author_facet |
Iwan Setyawan Ivanna K. Timotius Andreas A. Febrianto |
author_sort |
Iwan Setyawan |
title |
Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation |
title_short |
Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation |
title_full |
Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation |
title_fullStr |
Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation |
title_full_unstemmed |
Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation |
title_sort |
frontal face detection using haar wavelet coefficients and local histogram correlation |
publisher |
ITB Journal Publisher |
series |
Journal of ICT Research and Applications |
issn |
2337-5787 2338-5499 |
publishDate |
2013-09-01 |
description |
<p class="Abstract"><span lang="EN-US">Face detection is the main building block on which all automatic systems dealing with human faces is built. For example, a face recognition system must rely on face detection</span><!--[if supportFields]><span
lang=EN-US><span style='mso-element:field-begin'></span> XE "face
detection" </span><![endif]--><!--[if supportFields]><span lang=EN-US><span
style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> to process an input image and determine which areas contain human faces. These areas then become the input for the face recognition system for further processing. This paper presents a face detection system designed to detect frontal faces. The system uses Haar wavelet coefficients and local histogram correlation</span><!--[if supportFields]><span
lang=EN-US><span style='mso-element:field-begin'></span> XE "local
histogram correlation" </span><![endif]--><!--[if supportFields]><span
lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> as differentiating features. Our proposed system is trained using 100 training images. Our experiments show that the proposed system performed well during testing, achieving a detection rate of 91.5%.</span></p> |
url |
http://journals.itb.ac.id/index.php/jictra/article/view/213 |
work_keys_str_mv |
AT iwansetyawan frontalfacedetectionusinghaarwaveletcoefficientsandlocalhistogramcorrelation AT ivannaktimotius frontalfacedetectionusinghaarwaveletcoefficientsandlocalhistogramcorrelation AT andreasafebrianto frontalfacedetectionusinghaarwaveletcoefficientsandlocalhistogramcorrelation |
_version_ |
1725316163250946048 |