Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation

<p class="Abstract"><span lang="EN-US">Face detection is the main building block on which all automatic systems dealing with human faces is built. For example, a face recognition system must rely on face detection</span><!--[if supportFields]><span lan...

Full description

Bibliographic Details
Main Authors: Iwan Setyawan, Ivanna K. Timotius, Andreas A. Febrianto
Format: Article
Language:English
Published: ITB Journal Publisher 2013-09-01
Series:Journal of ICT Research and Applications
Online Access:http://journals.itb.ac.id/index.php/jictra/article/view/213
id doaj-d10ea5f253674353af1217e847542037
record_format Article
spelling doaj-d10ea5f253674353af1217e8475420372020-11-25T00:33:32ZengITB Journal PublisherJournal of ICT Research and Applications2337-57872338-54992013-09-0153157172214Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram CorrelationIwan Setyawan0Ivanna K. Timotius1Andreas A. Febrianto2Department of Electronic & Computer Engineering, Satya Wacana Christian University, Jl. Diponegoro 52 – 60, Salatiga, IndonesiaDepartment of Electronic & Computer Engineering, Satya Wacana Christian University, Jl. Diponegoro 52 – 60, Salatiga, IndonesiaDepartment of Electronic & Computer Engineering, Satya Wacana Christian University, Jl. Diponegoro 52 – 60, Salatiga, Indonesia<p class="Abstract"><span lang="EN-US">Face detection is the main building block on which all automatic systems dealing with human faces is built. For example, a face recognition system must rely on face detection</span><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-begin'></span> XE &quot;face detection&quot; </span><![endif]--><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> to process an input image and determine which areas contain human faces. These areas then become the input for the face recognition system for further processing. This paper presents a face detection system designed to detect frontal faces. The system uses Haar wavelet coefficients and local histogram correlation</span><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-begin'></span> XE &quot;local histogram correlation&quot; </span><![endif]--><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> as differentiating features. Our proposed system is trained using 100 training images. Our experiments show that the proposed system performed well during testing, achieving a detection rate of 91.5%.</span></p>http://journals.itb.ac.id/index.php/jictra/article/view/213
collection DOAJ
language English
format Article
sources DOAJ
author Iwan Setyawan
Ivanna K. Timotius
Andreas A. Febrianto
spellingShingle Iwan Setyawan
Ivanna K. Timotius
Andreas A. Febrianto
Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
Journal of ICT Research and Applications
author_facet Iwan Setyawan
Ivanna K. Timotius
Andreas A. Febrianto
author_sort Iwan Setyawan
title Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
title_short Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
title_full Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
title_fullStr Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
title_full_unstemmed Frontal Face Detection using Haar Wavelet Coefficients and Local Histogram Correlation
title_sort frontal face detection using haar wavelet coefficients and local histogram correlation
publisher ITB Journal Publisher
series Journal of ICT Research and Applications
issn 2337-5787
2338-5499
publishDate 2013-09-01
description <p class="Abstract"><span lang="EN-US">Face detection is the main building block on which all automatic systems dealing with human faces is built. For example, a face recognition system must rely on face detection</span><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-begin'></span> XE &quot;face detection&quot; </span><![endif]--><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> to process an input image and determine which areas contain human faces. These areas then become the input for the face recognition system for further processing. This paper presents a face detection system designed to detect frontal faces. The system uses Haar wavelet coefficients and local histogram correlation</span><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-begin'></span> XE &quot;local histogram correlation&quot; </span><![endif]--><!--[if supportFields]><span lang=EN-US><span style='mso-element:field-end'></span></span><![endif]--><span lang="EN-US"> as differentiating features. Our proposed system is trained using 100 training images. Our experiments show that the proposed system performed well during testing, achieving a detection rate of 91.5%.</span></p>
url http://journals.itb.ac.id/index.php/jictra/article/view/213
work_keys_str_mv AT iwansetyawan frontalfacedetectionusinghaarwaveletcoefficientsandlocalhistogramcorrelation
AT ivannaktimotius frontalfacedetectionusinghaarwaveletcoefficientsandlocalhistogramcorrelation
AT andreasafebrianto frontalfacedetectionusinghaarwaveletcoefficientsandlocalhistogramcorrelation
_version_ 1725316163250946048