NORMALISATION OF THE DRIVE PRECISION OF METAL-CUTTING MACHINES

Abstract. Objectives The purpose of the study is to create a methodology for computing the design of the primary drive mechanism of metal cutting machines, making it possible to reduce error when realising a set of preferred output criteria. Methods The accuracy of established modes of operation is...

Full description

Bibliographic Details
Main Authors: Irina A. Klenova, Dmitry A. Rudikov, Svetlana N. Kholodova
Format: Article
Language:Russian
Published: Daghestan State Technical University 2017-07-01
Series:Vestnik Dagestanskogo Gosudarstvennogo Tehničeskogo Universiteta: Tehničeskie Nauki
Subjects:
Online Access:https://vestnik.dgtu.ru/jour/article/view/364
Description
Summary:Abstract. Objectives The purpose of the study is to create a methodology for computing the design of the primary drive mechanism of metal cutting machines, making it possible to reduce error when realising a set of preferred output criteria. Methods The accuracy of established modes of operation is a key determinant on which the efficiency of cutting operations depends. In order to determine and evaluate drive errors in metal-cutting machines, three methods were proposed: direct measurement of the frequencies of the series, calculations using kinematic balance equations and summation of individual components. It is recommended that an unloaded machine be used to check the accuracy of the series gained by the machine's drive. Results By measuring the actual spindle rotation frequencies and kinematic calculation – as well as summing the components of the total error – the developed methodology makes it possible to calculate and estimate the error of a series gained by the drive of a metal-cutting machine at the design stage with a sufficiently high accuracy. The presented complex helps to reveal the role of the rounding error of the output criteria in the formation of the general relative error and provides a basis for its possible reduction. Conclusion The use of the proposed methodology expands the scientific basis for the development of algorithms and programs facilitating the selection of the optimal number of gear teeth for multiplying groups and structures and guaranteeing high accuracy of the gained series.
ISSN:2073-6185
2542-095X