Critical Load Prediction in Notched E/Glass–Epoxy-Laminated Composites Using the Virtual Isotropic Material Concept Combined with the Average Strain Energy Density Criterion
This paper attempts to validate the application of the Virtual Isotropic Material Concept (VIMC) in combination with the average strain energy density (ASED) criterion to predict the critical load in notched laminated composites. This methodology was applied to E/glass–epoxy-laminated composites con...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/13/7/1057 |
Summary: | This paper attempts to validate the application of the Virtual Isotropic Material Concept (VIMC) in combination with the average strain energy density (ASED) criterion to predict the critical load in notched laminated composites. This methodology was applied to E/glass–epoxy-laminated composites containing U-notches. For this purpose, a series of fracture test data recently published in the literature on specimens with different notch tip radii, lay-up configurations, and a number of plies were employed. It was shown that the VIMC–ASED combined approach provided satisfactory predictions of the last-ply failure (LPF) loads (i.e., critical loads). |
---|---|
ISSN: | 2073-4360 |