The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation
The exact rational solutions, quasi-periodic wave solutions, and N-soliton solutions of 3 + 1 dimensional Jimbo-Miwa equation are acquired, respectively, by using the Hirota method, whereafter the rational solutions are also called algebraic solitary waves solutions and used to describe the squall l...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2016/7241625 |
id |
doaj-d0c01e59585348a19ccb6705ec10c6c8 |
---|---|
record_format |
Article |
spelling |
doaj-d0c01e59585348a19ccb6705ec10c6c82021-07-02T02:03:28ZengHindawi LimitedAdvances in Mathematical Physics1687-91201687-91392016-01-01201610.1155/2016/72416257241625The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa EquationHongwei Yang0Yong Zhang1Xiaoen Zhang2Xin Chen3Zhenhua Xu4College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaCollege of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, ChinaKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaThe exact rational solutions, quasi-periodic wave solutions, and N-soliton solutions of 3 + 1 dimensional Jimbo-Miwa equation are acquired, respectively, by using the Hirota method, whereafter the rational solutions are also called algebraic solitary waves solutions and used to describe the squall lines phenomenon and explained possible formation mechanism of the rainstorm formation which occur in the atmosphere, so the study on the rational solutions of soliton equations has potential application value in the atmosphere field; the soliton fission and fusion are described based on the resonant solution which is a special form of the N-soliton solutions. At last, the interactions of the solitons are shown with the aid of N-soliton solutions.http://dx.doi.org/10.1155/2016/7241625 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hongwei Yang Yong Zhang Xiaoen Zhang Xin Chen Zhenhua Xu |
spellingShingle |
Hongwei Yang Yong Zhang Xiaoen Zhang Xin Chen Zhenhua Xu The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation Advances in Mathematical Physics |
author_facet |
Hongwei Yang Yong Zhang Xiaoen Zhang Xin Chen Zhenhua Xu |
author_sort |
Hongwei Yang |
title |
The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation |
title_short |
The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation |
title_full |
The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation |
title_fullStr |
The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation |
title_full_unstemmed |
The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation |
title_sort |
rational solutions and quasi-periodic wave solutions as well as interactions of n-soliton solutions for 3 + 1 dimensional jimbo-miwa equation |
publisher |
Hindawi Limited |
series |
Advances in Mathematical Physics |
issn |
1687-9120 1687-9139 |
publishDate |
2016-01-01 |
description |
The exact rational solutions, quasi-periodic wave solutions, and N-soliton solutions of 3 + 1 dimensional Jimbo-Miwa equation are acquired, respectively, by using the Hirota method, whereafter the rational solutions are also called algebraic solitary waves solutions and used to describe the squall lines phenomenon and explained possible formation mechanism of the rainstorm formation which occur in the atmosphere, so the study on the rational solutions of soliton equations has potential application value in the atmosphere field; the soliton fission and fusion are described based on the resonant solution which is a special form of the N-soliton solutions. At last, the interactions of the solitons are shown with the aid of N-soliton solutions. |
url |
http://dx.doi.org/10.1155/2016/7241625 |
work_keys_str_mv |
AT hongweiyang therationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT yongzhang therationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT xiaoenzhang therationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT xinchen therationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT zhenhuaxu therationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT hongweiyang rationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT yongzhang rationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT xiaoenzhang rationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT xinchen rationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation AT zhenhuaxu rationalsolutionsandquasiperiodicwavesolutionsaswellasinteractionsofnsolitonsolutionsfor31dimensionaljimbomiwaequation |
_version_ |
1721343991752949760 |