Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber
In this paper, a polarization-controlled and flexible metamaterial absorber made of a set of wires etched on ultrathin teflon dielectric substrate is proposed. The simulation results showed that the proposed absorber achieved single-band absorptivity of 99.8% at 6.64 GHz for the TM (transverse magne...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-09-01
|
Series: | Materials |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1944/11/9/1619 |
id |
doaj-d0bd7ce08479438ca4a3b536d0b3eba2 |
---|---|
record_format |
Article |
spelling |
doaj-d0bd7ce08479438ca4a3b536d0b3eba22020-11-25T00:41:53ZengMDPI AGMaterials1996-19442018-09-01119161910.3390/ma11091619ma11091619Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial AbsorberJiayun Wang0Rongcao Yang1Jianping Xu2Jinping Tian3Runbo Ma4Wenmei Zhang5School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, ChinaSchool of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, ChinaSchool of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, ChinaSchool of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, ChinaSchool of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, ChinaSchool of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, ChinaIn this paper, a polarization-controlled and flexible metamaterial absorber made of a set of wires etched on ultrathin teflon dielectric substrate is proposed. The simulation results showed that the proposed absorber achieved single-band absorptivity of 99.8% at 6.64 GHz for the TM (transverse magnetic) polarization wave and penta-band absorptivity of more than 99% at 11.68 GHz, 13.58 GHz, 15.48 GHz, 17.38 GHz, and 19.28 GHz for the TE (transverse electric) polarization waves. Moreover, each absorption peak had very narrow relative bandwidth and the position of penta-band absorption peaks could be adjusted by changing the length of the corresponding wire or selecting suitable substrate material according to actual requirements, because each wire can independently respond to electromagnetic (EM) waves. Furthermore, the surface current distributions corresponding to each absorption peak were studied to demonstrate the absorption mechanism. The absorption properties of the proposed structure with different bending radii and under different incident angles of the EM waves were investigated, showing good flexibility and incident angle-insensitive properties. In addition, the simulation results were confirmed by measuring a fabricated prototype. The proposed absorber may have useful applications in polarizers, sensors, bolometers, polarization detectors, etc.http://www.mdpi.com/1996-1944/11/9/1619metamaterial absorberpolarization-controlledpenta-bandflexibility |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiayun Wang Rongcao Yang Jianping Xu Jinping Tian Runbo Ma Wenmei Zhang |
spellingShingle |
Jiayun Wang Rongcao Yang Jianping Xu Jinping Tian Runbo Ma Wenmei Zhang Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber Materials metamaterial absorber polarization-controlled penta-band flexibility |
author_facet |
Jiayun Wang Rongcao Yang Jianping Xu Jinping Tian Runbo Ma Wenmei Zhang |
author_sort |
Jiayun Wang |
title |
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber |
title_short |
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber |
title_full |
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber |
title_fullStr |
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber |
title_full_unstemmed |
Polarization-Controlled and Flexible Single-/Penta-Band Metamaterial Absorber |
title_sort |
polarization-controlled and flexible single-/penta-band metamaterial absorber |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2018-09-01 |
description |
In this paper, a polarization-controlled and flexible metamaterial absorber made of a set of wires etched on ultrathin teflon dielectric substrate is proposed. The simulation results showed that the proposed absorber achieved single-band absorptivity of 99.8% at 6.64 GHz for the TM (transverse magnetic) polarization wave and penta-band absorptivity of more than 99% at 11.68 GHz, 13.58 GHz, 15.48 GHz, 17.38 GHz, and 19.28 GHz for the TE (transverse electric) polarization waves. Moreover, each absorption peak had very narrow relative bandwidth and the position of penta-band absorption peaks could be adjusted by changing the length of the corresponding wire or selecting suitable substrate material according to actual requirements, because each wire can independently respond to electromagnetic (EM) waves. Furthermore, the surface current distributions corresponding to each absorption peak were studied to demonstrate the absorption mechanism. The absorption properties of the proposed structure with different bending radii and under different incident angles of the EM waves were investigated, showing good flexibility and incident angle-insensitive properties. In addition, the simulation results were confirmed by measuring a fabricated prototype. The proposed absorber may have useful applications in polarizers, sensors, bolometers, polarization detectors, etc. |
topic |
metamaterial absorber polarization-controlled penta-band flexibility |
url |
http://www.mdpi.com/1996-1944/11/9/1619 |
work_keys_str_mv |
AT jiayunwang polarizationcontrolledandflexiblesinglepentabandmetamaterialabsorber AT rongcaoyang polarizationcontrolledandflexiblesinglepentabandmetamaterialabsorber AT jianpingxu polarizationcontrolledandflexiblesinglepentabandmetamaterialabsorber AT jinpingtian polarizationcontrolledandflexiblesinglepentabandmetamaterialabsorber AT runboma polarizationcontrolledandflexiblesinglepentabandmetamaterialabsorber AT wenmeizhang polarizationcontrolledandflexiblesinglepentabandmetamaterialabsorber |
_version_ |
1725285029196595200 |