Efficient Energy Flight Path Planning Algorithm Using 3-D Visibility Roadmap for Small Unmanned Aerial Vehicle

This paper presents the flight path planning algorithm in a 3-dimensional environment with fixed obstacles for small unmanned aerial vehicles (SUAVs). The emergence of SUAVs for commercial uses with low-altitude flight necessitates efficient flight path planning concerning economical energy consumpt...

Full description

Bibliographic Details
Main Authors: Zahoor Ahmad, Farman Ullah, Cong Tran, Sungchang Lee
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2017/2849745
Description
Summary:This paper presents the flight path planning algorithm in a 3-dimensional environment with fixed obstacles for small unmanned aerial vehicles (SUAVs). The emergence of SUAVs for commercial uses with low-altitude flight necessitates efficient flight path planning concerning economical energy consumption. We propose the visibility roadmap based on the visibility graph approach to deal with this uprising problem. The objective is to approximate the collision-free and energy-efficient flight path of SUAVs for flight missions in a considerable time complexity. Stepwise, we describe the construction of the proposed pathfinding algorithm in a convex static obstacle environment. The theoretical analysis and simulation results prove the effectiveness of our method.
ISSN:1687-5966
1687-5974