Summary: | Research on the cable-driven mechanism has greatly developed with the booming of the robots in the past 30 years, and a range of corresponding theoretical studies have been published on them. The large-scale robot or manipulator with the complex cable-driven mechanism can be reconfigured. However, more theoretical studies are required on their topological architecture design and optimization to achieve this. Therefore, the applied cable-driven architectures and the corresponding theoretical studies are reviewed and summarized here. The parallel, serial, and differential architecture are illustrated, as well as their theories and methods, such as the workspace analysis based on the Jacobian matrix, particle swarm optimization and genetic algorithm, and kinematic design based on the graph theory are described. The features of the architecture and the theory studies are concluded. It is hoped that this study will help with design of future studies.
|