TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing

Application of next-generation sequencing (NGS) methods for transcriptome analysis (RNA-seq) has become increasingly accessible in recent years and are of great interest to many biological disciplines including, eg, evolutionary biology, ecology, biomedicine, and computational biology. Although virt...

Full description

Bibliographic Details
Main Authors: Etienne Kornobis, Luis Cabellos, Fernando Aguilar, Cristina Frías-López, Julio Rozas, Jesús Marco, Rafael Zardoya
Format: Article
Language:English
Published: SAGE Publishing 2015-01-01
Series:Evolutionary Bioinformatics
Online Access:https://doi.org/10.4137/EBO.S23873
id doaj-d0a03a325eeb4ed8bac3806024f47fe9
record_format Article
spelling doaj-d0a03a325eeb4ed8bac3806024f47fe92020-11-25T01:20:38ZengSAGE PublishingEvolutionary Bioinformatics1176-93432015-01-011110.4137/EBO.S23873TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster ComputingEtienne Kornobis0Luis Cabellos1Fernando Aguilar2Cristina Frías-López3Julio Rozas4Jesús Marco5Rafael Zardoya6Departamento de biodiversidad y biología evolutiva, Museo Nacional de Ciencias Naturales MNCN (CSIC), Madrid, Spain.Instituto de Física de Cantabria, IFCA (CSIC-UC), Edificio Juan Jordá, Santander, Spain.Instituto de Física de Cantabria, IFCA (CSIC-UC), Edificio Juan Jordá, Santander, Spain.Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.Instituto de Física de Cantabria, IFCA (CSIC-UC), Edificio Juan Jordá, Santander, Spain.Departamento de biodiversidad y biología evolutiva, Museo Nacional de Ciencias Naturales MNCN (CSIC), Madrid, Spain.Application of next-generation sequencing (NGS) methods for transcriptome analysis (RNA-seq) has become increasingly accessible in recent years and are of great interest to many biological disciplines including, eg, evolutionary biology, ecology, biomedicine, and computational biology. Although virtually any research group can now obtain RNA-seq data, only a few have the bioinformatics knowledge and computation facilities required for transcriptome analysis. Here, we present TRUFA (TRanscriptome User-Friendly Analysis), an open informatics platform offering a web-based interface that generates the outputs commonly used in de novo RNA-seq analysis and comparative transcriptomics. TRUFA provides a comprehensive service that allows performing dynamically raw read cleaning, transcript assembly, annotation, and expression quantification. Due to the computationally intensive nature of such analyses, TRUFA is highly parallelized and benefits from accessing high-performance computing resources. The complete TRUFA pipeline was validated using four previously published transcriptomic data sets. TRUFA's results for the example datasets showed globally similar results when comparing with the original studies, and performed particularly better when analyzing the green tea dataset. The platform permits analyzing RNA-seq data in a fast, robust, and user-friendly manner. Accounts on TRUFA are provided freely upon request at https://trufa.ifca.es .https://doi.org/10.4137/EBO.S23873
collection DOAJ
language English
format Article
sources DOAJ
author Etienne Kornobis
Luis Cabellos
Fernando Aguilar
Cristina Frías-López
Julio Rozas
Jesús Marco
Rafael Zardoya
spellingShingle Etienne Kornobis
Luis Cabellos
Fernando Aguilar
Cristina Frías-López
Julio Rozas
Jesús Marco
Rafael Zardoya
TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing
Evolutionary Bioinformatics
author_facet Etienne Kornobis
Luis Cabellos
Fernando Aguilar
Cristina Frías-López
Julio Rozas
Jesús Marco
Rafael Zardoya
author_sort Etienne Kornobis
title TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing
title_short TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing
title_full TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing
title_fullStr TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing
title_full_unstemmed TRUFA: A User-Friendly Web Server for RNA-seq Analysis Using Cluster Computing
title_sort trufa: a user-friendly web server for rna-seq analysis using cluster computing
publisher SAGE Publishing
series Evolutionary Bioinformatics
issn 1176-9343
publishDate 2015-01-01
description Application of next-generation sequencing (NGS) methods for transcriptome analysis (RNA-seq) has become increasingly accessible in recent years and are of great interest to many biological disciplines including, eg, evolutionary biology, ecology, biomedicine, and computational biology. Although virtually any research group can now obtain RNA-seq data, only a few have the bioinformatics knowledge and computation facilities required for transcriptome analysis. Here, we present TRUFA (TRanscriptome User-Friendly Analysis), an open informatics platform offering a web-based interface that generates the outputs commonly used in de novo RNA-seq analysis and comparative transcriptomics. TRUFA provides a comprehensive service that allows performing dynamically raw read cleaning, transcript assembly, annotation, and expression quantification. Due to the computationally intensive nature of such analyses, TRUFA is highly parallelized and benefits from accessing high-performance computing resources. The complete TRUFA pipeline was validated using four previously published transcriptomic data sets. TRUFA's results for the example datasets showed globally similar results when comparing with the original studies, and performed particularly better when analyzing the green tea dataset. The platform permits analyzing RNA-seq data in a fast, robust, and user-friendly manner. Accounts on TRUFA are provided freely upon request at https://trufa.ifca.es .
url https://doi.org/10.4137/EBO.S23873
work_keys_str_mv AT etiennekornobis trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
AT luiscabellos trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
AT fernandoaguilar trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
AT cristinafriaslopez trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
AT juliorozas trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
AT jesusmarco trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
AT rafaelzardoya trufaauserfriendlywebserverforrnaseqanalysisusingclustercomputing
_version_ 1725132864196968448