Univalent functions defined by Ruscheweyh derivatives
We study some radii problems concerning the integral operator F(z)=γ+1zγ∫°zuγ−1f(u)du for certain classes, namely Kn and Mn(α), of univalent functions defined by Ruscheweyh derivatives. Infact, we obtain the converse of Ruscheweyh's result and improve a result of Goel and Sohi for complex γ...
Main Authors: | S. L. Shukla, Vinod Kumar |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1983-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171283000435 |
Similar Items
-
Ünivalent Fonksiyonlar Teorisinde Geometrik Fonksiyonların Sağladığı Bazı Özellikler
by: Semiha ÖZGÜL, et al.
Published: (2014-09-01) -
Ünivalent Fonksiyonlar Teorisinde Geometrik Fonksiyonların Sağladığı Bazı Özellikler
by: Semiha ÖZGÜL, et al.
Published: (2014-09-01) -
Ünivalent Fonksiyonlar Teorisinde Geometrik Fonksiyonların Sağladığı Bazı Özellikler
by: Semiha ÖZGÜL, et al.
Published: (2014-09-01) -
Bi-Bazilevič functions of complex order involving Ruscheweyh type q-difference operator
by: Gangadharan Murugusundaramoorthy, et al.
Published: (2018-03-01) -
Certain Subclasses of Meromorphic Univalent Function Involving Differential Operator
by: Teba Rzaij Al-Kubaisi, et al.
Published: (2020-12-01)